These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35757043)

  • 1. Binary Dynamic Logit for Correlated Ordinal: estimation, application and simulation.
    Li Y; Liu H; Dasgupta N
    J Appl Stat; 2022; 49(10):2657-2673. PubMed ID: 35757043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GEEORD: A SAS macro for analyzing ordinal response variables with repeated measures through proportional odds, partial proportional odds, or non-proportional odds models.
    Gao X; Schwartz TA; Preisser JS; Perin J
    Comput Methods Programs Biomed; 2017 Oct; 150():23-30. PubMed ID: 28859827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A bias-reduced generalized estimating equation approach for proportional odds models with small-sample longitudinal ordinal data.
    Tada Y; Sato T
    BMC Med Res Methodol; 2024 Jun; 24(1):140. PubMed ID: 38943068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized estimating equations to estimate the ordered stereotype logit model for panel data.
    Spiess M; Fernández D; Nguyen T; Liu I
    Stat Med; 2020 Jun; 39(14):1919-1940. PubMed ID: 32227517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ORTH.Ord: An R package for analyzing correlated ordinal outcomes using alternating logistic regressions with orthogonalized residuals.
    Meng C; Ryan M; Rathouz PJ; Turner EL; Preisser JS; Li F
    Comput Methods Programs Biomed; 2023 Jul; 237():107567. PubMed ID: 37207384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Risk prediction models for discrete ordinal outcomes: Calibration and the impact of the proportional odds assumption.
    Edlinger M; van Smeden M; Alber HF; Wanitschek M; Van Calster B
    Stat Med; 2022 Apr; 41(8):1334-1360. PubMed ID: 34897756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing proportionality in the proportional odds model fitted with GEE.
    Stiger TR; Barnhart HX; Williamson JM
    Stat Med; 1999 Jun; 18(11):1419-33. PubMed ID: 10399205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The proportional odds with partial proportionality constraints model for ordinal response variables.
    Fullerton AS; Xu J
    Soc Sci Res; 2012 Jan; 41(1):182-98. PubMed ID: 23017706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating bias in population parameters for some models for repeated measures ordinal data using NONMEM and NLMIXED.
    Jönsson S; Kjellsson MC; Karlsson MO
    J Pharmacokinet Pharmacodyn; 2004 Aug; 31(4):299-320. PubMed ID: 15563005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regression analysis of correlated ordinal data using orthogonalized residuals.
    Perin J; Preisser JS; Phillips C; Qaqish B
    Biometrics; 2014 Dec; 70(4):902-9. PubMed ID: 25134789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of multivariate longitudinal substance use outcomes using multivariate mixed cumulative logit model.
    Lin X; Mermelstein R; Hedeker D
    BMC Med Res Methodol; 2021 Nov; 21(1):239. PubMed ID: 34742242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Longitudinal Joint Modelling of Ordinal and Overdispersed Count Outcomes: A Bridge Distribution for the Ordinal Random Intercept.
    Amini P; Moghimbeigi A; Zayeri F; Tapak L; Maroufizadeh S; Verbeke G
    Comput Math Methods Med; 2021; 2021():5521881. PubMed ID: 33763151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GEECORR: A SAS macro for regression models of correlated binary responses and within-cluster correlation using generalized estimating equations.
    Shing TL; Preisser JS; Zink RC
    Comput Methods Programs Biomed; 2021 Sep; 208():106276. PubMed ID: 34325377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using binary logistic regression models for ordinal data with non-proportional odds.
    Bender R; Grouven U
    J Clin Epidemiol; 1998 Oct; 51(10):809-16. PubMed ID: 9762873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-part models for repeatedly measured ordinal data with "don't know" category.
    Gueorguieva R; Buta E; Morean M; Krishnan-Sarin S
    Stat Med; 2020 Dec; 39(30):4574-4592. PubMed ID: 32909252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Best Practices for Binary and Ordinal Data Analyses.
    Verhulst B; Neale MC
    Behav Genet; 2021 May; 51(3):204-214. PubMed ID: 33400061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proportional-odds models for repeated composite and long ordinal outcome scales.
    Parsons NR
    Stat Med; 2013 Aug; 32(18):3181-91. PubMed ID: 23401181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Monte Carlo simulation study comparing linear regression, beta regression, variable-dispersion beta regression and fractional logit regression at recovering average difference measures in a two sample design.
    Meaney C; Moineddin R
    BMC Med Res Methodol; 2014 Jan; 14():14. PubMed ID: 24461057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of weighted estimating equations for longitudinal binary data with drop-outs missing at random.
    Preisser JS; Lohman KK; Rathouz PJ
    Stat Med; 2002 Oct; 21(20):3035-54. PubMed ID: 12369080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An investigation of penalization and data augmentation to improve convergence of generalized estimating equations for clustered binary outcomes.
    Geroldinger A; Blagus R; Ogden H; Heinze G
    BMC Med Res Methodol; 2022 Jun; 22(1):168. PubMed ID: 35681120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.