These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 35757543)
1. Performance of Temporal and Spatial Independent Component Analysis in Identifying and Removing Low-Frequency Physiological and Motion Effects in Resting-State fMRI. Golestani AM; Chen JJ Front Neurosci; 2022; 16():867243. PubMed ID: 35757543 [TBL] [Abstract][Full Text] [Related]
2. Automating the Human Connectome Project's Temporal ICA Pipeline. Yang C; Coalson TS; Smith SM; Elam JS; Van Essen DC; Glasser MF bioRxiv; 2024 Jan; ():. PubMed ID: 38293188 [TBL] [Abstract][Full Text] [Related]
3. On applicability of PCA, voxel-wise variance normalization and dimensionality assumptions for sliding temporal window sICA in resting-state fMRI. Remes JJ; Abou Elseoud A; Ollila E; Haapea M; Starck T; Nikkinen J; Tervonen O; Silven O Magn Reson Imaging; 2013 Oct; 31(8):1338-48. PubMed ID: 23845397 [TBL] [Abstract][Full Text] [Related]
4. SCTICA: Sub-packet constrained temporal ICA method for fMRI data analysis. Shi Y; Zeng W Comput Biol Med; 2018 Nov; 102():75-85. PubMed ID: 30248514 [TBL] [Abstract][Full Text] [Related]
5. Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data. Glasser MF; Coalson TS; Bijsterbosch JD; Harrison SJ; Harms MP; Anticevic A; Van Essen DC; Smith SM Neuroimage; 2018 Nov; 181():692-717. PubMed ID: 29753843 [TBL] [Abstract][Full Text] [Related]
6. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. Pruim RHR; Mennes M; van Rooij D; Llera A; Buitelaar JK; Beckmann CF Neuroimage; 2015 May; 112():267-277. PubMed ID: 25770991 [TBL] [Abstract][Full Text] [Related]
7. Combined spatiotemporal ICA (stICA) for continuous and dynamic lag structure analysis of MREG data. Raatikainen V; Huotari N; Korhonen V; Rasila A; Kananen J; Raitamaa L; Keinänen T; Kantola J; Tervonen O; Kiviniemi V Neuroimage; 2017 Mar; 148():352-363. PubMed ID: 28088482 [TBL] [Abstract][Full Text] [Related]
8. The optimized combination of aCompCor and ICA-AROMA to reduce motion and physiologic noise in task fMRI data. Van Schuerbeek P; De Wandel L; Baeken C Biomed Phys Eng Express; 2022 Jul; 8(5):. PubMed ID: 35378526 [TBL] [Abstract][Full Text] [Related]
9. Prospective motion correction of fMRI: Improving the quality of resting state data affected by large head motion. Maziero D; Rondinoni C; Marins T; Stenger VA; Ernst T Neuroimage; 2020 May; 212():116594. PubMed ID: 32044436 [TBL] [Abstract][Full Text] [Related]
10. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Griffanti L; Salimi-Khorshidi G; Beckmann CF; Auerbach EJ; Douaud G; Sexton CE; Zsoldos E; Ebmeier KP; Filippini N; Mackay CE; Moeller S; Xu J; Yacoub E; Baselli G; Ugurbil K; Miller KL; Smith SM Neuroimage; 2014 Jul; 95():232-47. PubMed ID: 24657355 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of noise regression techniques in resting-state fMRI studies using data of 434 older adults. Scheel N; Keller JN; Binder EF; Vidoni ED; Burns JM; Thomas BP; Stowe AM; Hynan LS; Kerwin DR; Vongpatanasin W; Rossetti H; Cullum CM; Zhang R; Zhu DC Front Neurosci; 2022; 16():1006056. PubMed ID: 36340768 [TBL] [Abstract][Full Text] [Related]
12. Neural network of speech monitoring overlaps with overt speech production and comprehension networks: a sequential spatial and temporal ICA study. van de Ven V; Esposito F; Christoffels IK Neuroimage; 2009 Oct; 47(4):1982-91. PubMed ID: 19481159 [TBL] [Abstract][Full Text] [Related]
13. Impact of automated ICA-based denoising of fMRI data in acute stroke patients. Carone D; Licenik R; Suri S; Griffanti L; Filippini N; Kennedy J Neuroimage Clin; 2017; 16():23-31. PubMed ID: 28736698 [TBL] [Abstract][Full Text] [Related]
14. Comparing the efficacy of data-driven denoising methods for a multi-echo fMRI acquisition at 7T. Beckers AB; Drenthen GS; Jansen JFA; Backes WH; Poser BA; Keszthelyi D Neuroimage; 2023 Oct; 280():120361. PubMed ID: 37669723 [TBL] [Abstract][Full Text] [Related]
15. Estimating and mitigating the effects of systemic low frequency oscillations (sLFO) on resting state networks in awake non-human primates using time lag dependent methodology. Cao L; Kohut SJ; Frederick BD Front Neuroimaging; 2022; 1():1031991. PubMed ID: 37555145 [TBL] [Abstract][Full Text] [Related]
16. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. Parkes L; Fulcher B; Yücel M; Fornito A Neuroimage; 2018 May; 171():415-436. PubMed ID: 29278773 [TBL] [Abstract][Full Text] [Related]
17. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Salimi-Khorshidi G; Douaud G; Beckmann CF; Glasser MF; Griffanti L; Smith SM Neuroimage; 2014 Apr; 90():449-68. PubMed ID: 24389422 [TBL] [Abstract][Full Text] [Related]
18. Denoising the speaking brain: toward a robust technique for correcting artifact-contaminated fMRI data under severe motion. Xu Y; Tong Y; Liu S; Chow HM; AbdulSabur NY; Mattay GS; Braun AR Neuroimage; 2014 Dec; 103():33-47. PubMed ID: 25225001 [TBL] [Abstract][Full Text] [Related]
19. Beyond Noise: Using Temporal ICA to Extract Meaningful Information from High-Frequency fMRI Signal Fluctuations during Rest. Boubela RN; Kalcher K; Huf W; Kronnerwetter C; Filzmoser P; Moser E Front Hum Neurosci; 2013; 7():168. PubMed ID: 23641208 [TBL] [Abstract][Full Text] [Related]
20. Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Calhoun VD; Adali T; Pearlson GD; Pekar JJ Hum Brain Mapp; 2001 May; 13(1):43-53. PubMed ID: 11284046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]