BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 35757551)

  • 1. Cell Non-autonomous Proteostasis Regulation in Aging and Disease.
    Ferreira JV; da Rosa Soares A; Pereira P
    Front Neurosci; 2022; 16():878296. PubMed ID: 35757551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting inter-tissue stress signaling mechanisms to preserve organismal proteostasis during aging.
    van Oosten-Hawle P
    Front Physiol; 2023; 14():1228490. PubMed ID: 37469564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathways of cellular proteostasis in aging and disease.
    Klaips CL; Jayaraj GG; Hartl FU
    J Cell Biol; 2018 Jan; 217(1):51-63. PubMed ID: 29127110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The struggle by Caenorhabditis elegans to maintain proteostasis during aging and disease.
    Kikis EA
    Biol Direct; 2016 Nov; 11(1):58. PubMed ID: 27809888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteostasis and the Regulation of Intra- and Extracellular Protein Aggregation by ATP-Independent Molecular Chaperones: Lens α-Crystallins and Milk Caseins.
    Carver JA; Ecroyd H; Truscott RJW; Thorn DC; Holt C
    Acc Chem Res; 2018 Mar; 51(3):745-752. PubMed ID: 29442498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-cell Autonomous Maintenance of Proteostasis by Molecular Chaperones and Its Molecular Mechanism.
    Takeuchi T
    Biol Pharm Bull; 2018; 41(6):843-849. PubMed ID: 29863073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteostasis-associated aging: lessons from a Drosophila model.
    Yu G; Hyun S
    Genes Genomics; 2021 Jan; 43(1):1-9. PubMed ID: 33111208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Year at the Forefront of Proteostasis and Aging.
    Thompson MA; De-Souza EA
    Biol Open; 2023 Feb; 12(2):. PubMed ID: 36794708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenging Proteostasis: Role of the Chaperone Network to Control Aggregation-Prone Proteins in Human Disease.
    Sinnige T; Yu A; Morimoto RI
    Adv Exp Med Biol; 2020; 1243():53-68. PubMed ID: 32297211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNAs in Age-Related Proteostasis and Stress Responses.
    Matai L; Slack FJ
    Noncoding RNA; 2023 Apr; 9(2):. PubMed ID: 37104008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model systems of protein-misfolding diseases reveal chaperone modifiers of proteotoxicity.
    Brehme M; Voisine C
    Dis Model Mech; 2016 Aug; 9(8):823-38. PubMed ID: 27491084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial sequestration of misfolded proteins in neurodegenerative diseases.
    Rolli S; Sontag EM
    Biochem Soc Trans; 2022 Apr; 50(2):759-771. PubMed ID: 35311889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of cell-non-autonomous proteostasis in metazoans.
    O'Brien D; van Oosten-Hawle P
    Essays Biochem; 2016 Oct; 60(2):133-142. PubMed ID: 27744329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteostasis Failure in Neurodegenerative Diseases: Focus on Oxidative Stress.
    Höhn A; Tramutola A; Cascella R
    Oxid Med Cell Longev; 2020; 2020():5497046. PubMed ID: 32308803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuropeptide signaling and SKN-1 orchestrate differential responses of the proteostasis network to dissimilar proteotoxic insults.
    Boocholez H; Marques FC; Levine A; Roitenberg N; Siddiqui AA; Zhu H; Moll L; Grushko D; Haimson RB; Elami T; Cohen E
    Cell Rep; 2022 Feb; 38(6):110350. PubMed ID: 35139369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteotoxicity and mitochondrial dynamics in aging diabetic brain.
    Fernandes V; Choudhary M; Kumar A; Singh SB
    Pharmacol Res; 2020 Sep; 159():104948. PubMed ID: 32450345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic analysis of protein homeostasis and aggregation.
    Laskowska E; Kuczyńska-Wiśnik D; Lipińska B
    J Proteomics; 2019 Apr; 198():98-112. PubMed ID: 30529741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Walking the tightrope: proteostasis and neurodegenerative disease.
    Yerbury JJ; Ooi L; Dillin A; Saunders DN; Hatters DM; Beart PM; Cashman NR; Wilson MR; Ecroyd H
    J Neurochem; 2016 May; 137(4):489-505. PubMed ID: 26872075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repurposing Proteostasis-Modifying Drugs to Prevent or Treat Age-Related Dementia: A Systematic Review.
    Heard DS; Tuttle CSL; Lautenschlager NT; Maier AB
    Front Physiol; 2018; 9():1520. PubMed ID: 30425653
    [No Abstract]   [Full Text] [Related]  

  • 20. Chaperone networks: tipping the balance in protein folding diseases.
    Voisine C; Pedersen JS; Morimoto RI
    Neurobiol Dis; 2010 Oct; 40(1):12-20. PubMed ID: 20472062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.