These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35757959)

  • 1. Conductance and tunnelling current characteristics for individual identification of synthetic nucleic acids with a graphene device.
    Kumawat RL; Pathak B
    Phys Chem Chem Phys; 2022 Jul; 24(26):15756-15766. PubMed ID: 35757959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying DNA Nucleotides via Transverse Electronic Transport in Atomically Thin Topologically Defected Graphene Electrodes.
    Kumawat RL; Pathak B
    ACS Appl Bio Mater; 2021 Feb; 4(2):1403-1412. PubMed ID: 35014491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The origin of dips for the graphene-based DNA sequencing device.
    Cho Y; Min SK; Kim WY; Kim KS
    Phys Chem Chem Phys; 2011 Aug; 13(32):14293-6. PubMed ID: 21617796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA base-specific modulation of microampere transverse edge currents through a metallic graphene nanoribbon with a nanopore.
    Saha KK; Drndić M; Nikolić BK
    Nano Lett; 2012 Jan; 12(1):50-5. PubMed ID: 22141739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transverse conductance of DNA nucleotides in a graphene nanogap from first principles.
    Prasongkit J; Grigoriev A; Pathak B; Ahuja R; Scheicher RH
    Nano Lett; 2011 May; 11(5):1941-5. PubMed ID: 21495701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of DNA nucleotides by conductance and tunnelling current variation through borophene nanogaps.
    Jena MK; Pathak B
    Phys Chem Chem Phys; 2022 Sep; 24(35):21427-21439. PubMed ID: 36047510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of DNA Bases via Field Effect Transistor of Graphene Nanoribbon With a Nanopore: Semi-Empirical Modeling.
    Wasfi A; Awwad F; Ayesh AI
    IEEE Trans Nanobioscience; 2022 Jul; 21(3):347-357. PubMed ID: 33945483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast DNA sequencing with a graphene-based nanochannel device.
    Min SK; Kim WY; Cho Y; Kim KS
    Nat Nanotechnol; 2011 Mar; 6(3):162-5. PubMed ID: 21297626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-Principles Investigation of Nanopore Sequencing Using Variable Voltage Bias on Graphene-Based Nanoribbons.
    McFarland HL; Ahmed T; Zhu JX; Balatsky AV; Haraldsen JT
    J Phys Chem Lett; 2015 Jul; 6(13):2616-21. PubMed ID: 26266743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical assessment of feasibility to sequence DNA through interlayer electronic tunneling transport at aligned nanopores in bilayer graphene.
    Prasongkit J; Feliciano GT; Rocha AR; He Y; Osotchan T; Ahuja R; Scheicher RH
    Sci Rep; 2015 Dec; 5():17560. PubMed ID: 26634811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrically sensing Hachimoji DNA nucleotides through a hybrid graphene/h-BN nanopore.
    de Souza FAL; Sivaraman G; Fyta M; Scheicher RH; Scopel WL; Amorim RG
    Nanoscale; 2020 Sep; 12(35):18289-18295. PubMed ID: 32857078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative differential resistance, rectification, tunable peak-current position and switching effects in an alanine-based molecular device.
    Kokabi A; Touski SB; Mamdouh A
    J Med Eng Technol; 2021 Oct; 45(7):505-510. PubMed ID: 34184593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device.
    Nelson T; Zhang B; Prezhdo OV
    Nano Lett; 2010 Sep; 10(9):3237-42. PubMed ID: 20722409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport properties of graphene nanoribbon-based molecular devices.
    Ding Z; Jiang J; Xing H; Shu H; Dong R; Chen X; Lu W
    J Comput Chem; 2011 Mar; 32(4):737-41. PubMed ID: 20925088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-dependent conductance of a single graphene nanoribbon.
    Koch M; Ample F; Joachim C; Grill L
    Nat Nanotechnol; 2012 Nov; 7(11):713-7. PubMed ID: 23064554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic structure and transport of a carbon chain between graphene nanoribbon leads.
    Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM
    J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strained zigzag graphene nanoribbon devices with vacancies as perfect spin filters.
    Magno M; Hagelberg F
    J Mol Model; 2018 Jan; 24(1):35. PubMed ID: 29313152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prospects of Graphene-hBN Heterostructure Nanogap for DNA Sequencing.
    Shukla V; Jena NK; Grigoriev A; Ahuja R
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):39945-39952. PubMed ID: 29099165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions.
    Li XF; Wang LL; Chen KQ; Luo Y
    J Phys Condens Matter; 2012 Mar; 24(9):095801. PubMed ID: 22317831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicene as a new potential DNA sequencing device.
    Amorim RG; Scheicher RH
    Nanotechnology; 2015 Apr; 26(15):154002. PubMed ID: 25797645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.