These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35758022)

  • 1. Coexistence of Contact Electrification and Dynamic p-n Junction Modulation Effects in Triboelectrification.
    Wang H; Huang S; Kuang H; Zou T; Rajagopalan P; Wang X; Li Y; Jin H; Dong S; Zhou H; Hasan T; Occhipinti LG; Kim JM; Luo J
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):30410-30419. PubMed ID: 35758022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding and Controlling Electrostatic Discharge in Triboelectric Nanogenerators.
    Leon RT; Sherrell PC; Michel JI; Bullock J; Berry JD; Ellis AV
    ChemSusChem; 2024 Sep; 17(17):e202400366. PubMed ID: 38538554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semiconductor Contact-Electrification-Dominated Tribovoltaic Effect for Ultrahigh Power Generation.
    Zhang Z; Wang Z; Chen Y; Feng Y; Dong S; Zhou H; Wang ZL; Zhang C
    Adv Mater; 2022 May; 34(20):e2200146. PubMed ID: 35291054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contact electrification field-effect transistor.
    Zhang C; Tang W; Zhang L; Han C; Wang ZL
    ACS Nano; 2014 Aug; 8(8):8702-9. PubMed ID: 25119657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scanning Probing of the Tribovoltaic Effect at the Sliding Interface of Two Semiconductors.
    Zheng M; Lin S; Xu L; Zhu L; Wang ZL
    Adv Mater; 2020 May; 32(21):e2000928. PubMed ID: 32270901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Electron-Transfer Mechanism in the Contact-Electrification Effect.
    Xu C; Zi Y; Wang AC; Zou H; Dai Y; He X; Wang P; Wang YC; Feng P; Li D; Wang ZL
    Adv Mater; 2018 Apr; 30(15):e1706790. PubMed ID: 29508454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors.
    Wang ZL
    ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-powered liquid chemical sensors based on solid-liquid contact electrification.
    Ying Z; Long Y; Yang F; Dong Y; Li J; Zhang Z; Wang X
    Analyst; 2021 Mar; 146(5):1656-1662. PubMed ID: 33514956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in Inorganic Nanomaterials for Triboelectric Nanogenerators.
    Zhang R; Olin H
    ACS Nanosci Au; 2022 Feb; 2(1):12-31. PubMed ID: 35211696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raising the Working Temperature of a Triboelectric Nanogenerator by Quenching Down Electron Thermionic Emission in Contact-Electrification.
    Xu C; Wang AC; Zou H; Zhang B; Zhang C; Zi Y; Pan L; Wang P; Feng P; Lin Z; Wang ZL
    Adv Mater; 2018 Sep; 30(38):e1803968. PubMed ID: 30091484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyoxometalates-Based Semi-flexible Metal-Semiconductor Triboelectric Nanogenerators for Low Frequency and Small Amplitude Mechanical Energy Harvesting.
    Ma C; Wang T; Li F; Guan H; Chen W; Zhang L; Zheng Y; Wang C; Tang Q; Chen W
    Chemistry; 2021 Jul; 27(39):10115-10122. PubMed ID: 34101277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Behavior of the Triboelectric Charges and Structural Optimization of the Friction Layer for a Triboelectric Nanogenerator.
    Cui N; Gu L; Lei Y; Liu J; Qin Y; Ma X; Hao Y; Wang ZL
    ACS Nano; 2016 Jun; 10(6):6131-8. PubMed ID: 27129019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achieving ultrahigh triboelectric charge density for efficient energy harvesting.
    Wang J; Wu C; Dai Y; Zhao Z; Wang A; Zhang T; Wang ZL
    Nat Commun; 2017 Jul; 8(1):88. PubMed ID: 28729530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leverage Surface Chemistry for High-Performance Triboelectric Nanogenerators.
    Xu J; Zou Y; Nashalian A; Chen J
    Front Chem; 2020; 8():577327. PubMed ID: 33330365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling Surface Charge Generated by Contact Electrification: Strategies and Applications.
    Chen L; Shi Q; Sun Y; Nguyen T; Lee C; Soh S
    Adv Mater; 2018 Nov; 30(47):e1802405. PubMed ID: 30129287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions of Different Functional Groups to Contact Electrification of Polymers.
    Li S; Nie J; Shi Y; Tao X; Wang F; Tian J; Lin S; Chen X; Wang ZL
    Adv Mater; 2020 Jun; 32(25):e2001307. PubMed ID: 32410246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Wettability and Geometry on Contact Electrification between Nonionic Insulators.
    Jimidar ISM; Kwiecinski W; Roozendaal G; Kooij ES; Gardeniers HJGE; Desmet G; Sotthewes K
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):42004-42014. PubMed ID: 37389550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of triboelectrification on Al-metal surfaces through microstructural design.
    Feng M; Ma S; Liu Y; Zheng Y; Feng Y; Wang H; Cheng J; Wang D
    Nanoscale; 2022 Oct; 14(40):15129-15140. PubMed ID: 36205557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ternary Electrification Layered Architecture for High-Performance Triboelectric Nanogenerators.
    Deng W; Zhou Y; Zhao X; Zhang S; Zou Y; Xu J; Yeh MH; Guo H; Chen J
    ACS Nano; 2020 Jul; 14(7):9050-9058. PubMed ID: 32627531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density of Surface States: Another Key Contributing Factor in Triboelectric Charge Generation.
    Xu G; Guan D; Fu J; Li X; Li A; Ding W; Zi Y
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5355-5362. PubMed ID: 35073035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.