BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35758035)

  • 1. Sub-Second Joule-Heated RuO
    Noh SH; Lee HB; Lee KS; Lee H; Han TH
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):29867-29877. PubMed ID: 35758035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cold-Resistant Nitrogen/Sulfur Dual-Doped Graphene Fiber Supercapacitors with Solar-Thermal Energy Conversion Effect.
    Zhao T; Yang D; Xu T; Zhang M; Zhang S; Qin L; Yu ZZ
    Chemistry; 2021 Feb; 27(10):3473-3482. PubMed ID: 33347672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Hierarchically Porous Graphene Fiber-Shaped Supercapacitors with High Specific Capacitance and Rate Capability.
    Lu C; Meng J; Zhang J; Chen X; Du M; Chen Y; Hou C; Wang J; Ju A; Wang X; Qiu Y; Wang S; Zhang K
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25205-25217. PubMed ID: 31268652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen-Doped Porous Core-Sheath Graphene Fiber-Shaped Supercapacitors.
    Ke Q; Liu Y; Xiang R; Zhang Y; Du M; Li Z; Wei Y; Zhang K
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-RuO
    Zhai S; Wang C; Karahan HE; Wang Y; Chen X; Sui X; Huang Q; Liao X; Wang X; Chen Y
    Small; 2018 Jun; ():e1800582. PubMed ID: 29882370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous Graphene-Carbon Nanotube Scaffolds for Fiber Supercapacitors.
    Park H; Ambade RB; Noh SH; Eom W; Koh KH; Ambade SB; Lee WJ; Kim SH; Han TH
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9011-9022. PubMed ID: 30653285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors.
    Wang W; Guo S; Lee I; Ahmed K; Zhong J; Favors Z; Zaera F; Ozkan M; Ozkan CS
    Sci Rep; 2014 Mar; 4():4452. PubMed ID: 24663242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Entropy Engineering Reinforced Surface Electronic States and Structural Defects of Hierarchical Metal Oxides@Graphene Fibers toward High-Performance Wearable Supercapacitors.
    Hu H; Yang C; Chen F; Li J; Jia X; Wang Y; Zhu X; Man Z; Wu G; Chen W
    Adv Mater; 2024 Jun; ():e2406483. PubMed ID: 38898699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertically Aligned Graphene-Carbon Fiber Hybrid Electrodes with Superlong Cycling Stability for Flexible Supercapacitors.
    Cherusseri J; Sambath Kumar K; Pandey D; Barrios E; Thomas J
    Small; 2019 Oct; 15(44):e1902606. PubMed ID: 31512364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible fiber-shaped supercapacitors based on graphene/polyaniline hybrid fibers with high energy density and capacitance.
    Wu Y; Meng Z; Yang J; Xue Y
    Nanotechnology; 2021 Apr; 32(29):. PubMed ID: 33831848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Defects on the Particle Size-Capacitance Relationship of Zn-Co Mixed Metal Oxide Supported on Heteroatom-Doped Graphenes as Supercapacitors.
    Hu J; Peng Y; Albero J; García H
    Adv Sci (Weinh); 2022 Dec; 9(34):e2204316. PubMed ID: 36257897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile and Scalable Fabrication of High-Performance Microsupercapacitors Based on Laser-Scribed
    Yuan M; Luo F; Wang Z; Li H; Rao Y; Yu J; Wang Y; Xie D; Chen X; Wong CP
    ACS Appl Mater Interfaces; 2021 May; 13(19):22426-22437. PubMed ID: 33957749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tungsten nitride-coated graphene fibers for high-performance wearable supercapacitors.
    Salman A; Padmajan Sasikala S; Kim IH; Kim JT; Lee GS; Kim JG; Kim SO
    Nanoscale; 2020 Oct; 12(39):20239-20249. PubMed ID: 33026025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Electrochemical Capacity MnO
    Tian X; Cheng X; Liao S; Chen J; Lv P; Wei Q
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37908058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous 3D graphene aerogel co-doped with nitrogen and sulfur for high-performance supercapacitors.
    Chen Y; Hao H; Lu X; Li W; He G; Shen W; Shearing PR; Brett DJL
    Nanotechnology; 2021 May; 32(19):195405. PubMed ID: 33494075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heteroatom-Doped Flash Graphene.
    Chen W; Ge C; Li JT; Beckham JL; Yuan Z; Wyss KM; Advincula PA; Eddy L; Kittrell C; Chen J; Luong DX; Carter RA; Tour JM
    ACS Nano; 2022 Apr; 16(4):6646-6656. PubMed ID: 35320673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-Doped Modified Graphene/Fe
    Chen Y; Guo Z; Jian B; Zheng C; Zhang H
    Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31842343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure Design of Carbonaceous Fibers: A Promising Strategy toward High-Performance Weaveable/Wearable Supercapacitors.
    Yu C; An J; Zhou R; Xu H; Zhou J; Chen Q; Sun G; Huang W
    Small; 2020 Jun; 16(25):e2000653. PubMed ID: 32432831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting storage properties of reduced graphene oxide fiber modified with MOFs-derived porous carbon through a wet-spinning fiber strategy.
    Yao M; Ji D; Chen Y; Wang Z; Dong J; Zhang Q; Ramakrishna S; Zhao X
    Nanotechnology; 2020 Sep; 31(39):395603. PubMed ID: 32531767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bottom-up Approach for Designing Cobalt Tungstate Nanospheres through Sulfur Amendment for High-Performance Hybrid Supercapacitors.
    Patil SJ; Chodankar NR; Huh YS; Han YK; Lee DW
    ChemSusChem; 2021 Mar; 14(6):1602-1611. PubMed ID: 33533140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.