BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35758035)

  • 21. Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density.
    Cai W; Lai T; Lai J; Xie H; Ouyang L; Ye J; Yu C
    Sci Rep; 2016 Jun; 6():26890. PubMed ID: 27248510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facile synthesis of ternary graphene nanocomposites with doped metal oxide and conductive polymers as electrode materials for high performance supercapacitors.
    Ishaq S; Moussa M; Kanwal F; Ehsan M; Saleem M; Van TN; Losic D
    Sci Rep; 2019 Apr; 9(1):5974. PubMed ID: 30979913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flexible Fiber-Shaped Supercapacitor Based on Nickel-Cobalt Double Hydroxide and Pen Ink Electrodes on Metallized Carbon Fiber.
    Gao L; Surjadi JU; Cao K; Zhang H; Li P; Xu S; Jiang C; Song J; Sun D; Lu Y
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5409-5418. PubMed ID: 28117961
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Graphene-Based Nanomaterials for Flexible and Wearable Supercapacitors.
    Huang L; Santiago D; Loyselle P; Dai L
    Small; 2018 Oct; 14(43):e1800879. PubMed ID: 30009468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metal-Organic Coordination Polymer to Prepare Density Controllable and High Nitrogen-Doped Content Carbon/Graphene for High Performance Supercapacitors.
    Luo J; Zhong W; Zou Y; Xiong C; Yang W
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):317-326. PubMed ID: 27966882
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enrichment of Pyrrolic Nitrogen by Hole Defects in Nitrogen and Sulfur Co-Doped Graphene Hydrogel for Flexible Supercapacitors.
    Tran NQ; Kang BK; Woo MH; Yoon DH
    ChemSusChem; 2016 Aug; 9(16):2261-8. PubMed ID: 27460556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polyethyleneimine-Mediated Fabrication of Two-Dimensional Cobalt Sulfide/Graphene Hybrid Nanosheets for High-Performance Supercapacitors.
    Wang M; Yang J; Liu S; Hu C; Li S; Qiu J
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26235-26242. PubMed ID: 31245998
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Zhu J; Zhang Q; Chen H; Zhang R; Liu L; Yu J
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43634-43645. PubMed ID: 32909429
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A New Strategy for Fabricating Well-Distributed Polyaniline/Graphene Composite Fibers toward Flexible High-Performance Supercapacitors.
    Qiu Y; Jia X; Zhang M; Li H
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234424
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toward Flexible and Wearable Embroidered Supercapacitors from Cobalt Phosphides-Decorated Conductive Fibers.
    Wen J; Xu B; Zhou J
    Nanomicro Lett; 2019 Oct; 11(1):89. PubMed ID: 34138049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transition Metal Ions Enable the Transition from Electrospun Prolamin Protein Fibers to Nitrogen-Doped Freestanding Carbon Films for Flexible Supercapacitors.
    Wang Y; Yang J; Du R; Chen L
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23731-23740. PubMed ID: 28661126
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-Performance Supercapacitors Based on
    Liu X; Liao G; Qi X; Mei X; Wang J; Wei Y; Qian K; Li C; Tao W; Tao J
    J Nanosci Nanotechnol; 2018 Dec; 18(12):8352-8359. PubMed ID: 30189959
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alternately Dipping Method to Prepare Graphene Fiber Electrodes for Ultra-high-Capacitance Fiber Supercapacitors.
    Qu G; Zhou Y; Zhang J; Xiong L; Yue Q; Kang Y
    iScience; 2020 Aug; 23(8):101396. PubMed ID: 32777775
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fe
    Ma Y; Sheng H; Dou W; Su Q; Zhou J; Xie E; Lan W
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41410-41418. PubMed ID: 32877166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly Conductive Ti
    Zhang J; Seyedin S; Qin S; Wang Z; Moradi S; Yang F; Lynch PA; Yang W; Liu J; Wang X; Razal JM
    Small; 2019 Feb; 15(8):e1804732. PubMed ID: 30653274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vertically Oriented Graphene Nanoribbon Fibers for High-Volumetric Energy Density All-Solid-State Asymmetric Supercapacitors.
    Sheng L; Wei T; Liang Y; Jiang L; Qu L; Fan Z
    Small; 2017 Jun; 13(22):. PubMed ID: 28417542
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crumpled graphene microspheres anchored on NiCo
    Yuan R; Chen W; Zhang J; Zhang L; Ren H; Miao T; Wang Z; Zhan K; Zhu M; Zhao B
    Dalton Trans; 2022 Mar; 51(11):4491-4501. PubMed ID: 35230381
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graphene supercapacitor with both high power and energy density.
    Yang H; Kannappan S; Pandian AS; Jang JH; Lee YS; Lu W
    Nanotechnology; 2017 Nov; 28(44):445401. PubMed ID: 28854156
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D Patternable Supercapacitors from Hierarchically Architected Porous Fiber Composites for Wearable and Waterproof Energy Storage.
    Wen J; Xu B; Zhou J; Xu J; Chen Y
    Small; 2019 Jun; 15(25):e1901313. PubMed ID: 31066493
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nickel molybdate nanorods supported on three-dimensional, porous nickel film coated on copper wire as an advanced binder-free electrode for flexible wire-type asymmetric micro-supercapacitors with enhanced electrochemical performances.
    Naderi L; Shahrokhian S
    J Colloid Interface Sci; 2019 Apr; 542():325-338. PubMed ID: 30763900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.