These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35758107)

  • 1. d-sp orbital hybridization: a strategy for activity improvement of transition metal catalysts.
    Chen H; Wu Q; Wang Y; Zhao Q; Ai X; Shen Y; Zou X
    Chem Commun (Camb); 2022 Jul; 58(56):7730-7740. PubMed ID: 35758107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design Strategies of Transition-Metal Phosphate and Phosphonate Electrocatalysts for Energy-Related Reactions.
    Zhao H; Yuan ZY
    ChemSusChem; 2021 Jan; 14(1):130-149. PubMed ID: 33030810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heteroatom-Doping of Non-Noble Metal-Based Catalysts for Electrocatalytic Hydrogen Evolution: An Electronic Structure Tuning Strategy.
    Wang J; Liao T; Wei Z; Sun J; Guo J; Sun Z
    Small Methods; 2021 Apr; 5(4):e2000988. PubMed ID: 34927849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orbital Occupancy and Spin Polarization: From Mechanistic Study to Rational Design of Transition Metal-Based Electrocatalysts toward Energy Applications.
    Do VH; Lee JM
    ACS Nano; 2022 Nov; 16(11):17847-17890. PubMed ID: 36314471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction: d-sp orbital hybridization: a strategy for activity improvement of transition metal catalysts.
    Chen H; Wu Q; Wang Y; Zhao Q; Ai X; Shen Y; Zou X
    Chem Commun (Camb); 2023 Mar; 59(22):3317. PubMed ID: 36866695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of electronic descriptors for catalytic activity of transition-metal and non-metal doped MoS
    Xie Z; Huang X; Zhang Z; Xu H
    Phys Chem Chem Phys; 2021 Jul; 23(28):15101-15106. PubMed ID: 34250538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward the Rational Design of More Efficient Mo
    Meena R; Bitter JH; Zuilhof H; Li G
    ACS Catal; 2023 Oct; 13(20):13446-13455. PubMed ID: 37881787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybridization State Transition under Working Conditions: Activity Origin of Single-Atom Catalysts.
    Cui Y; Ren C; Li Q; Ling C; Wang J
    J Am Chem Soc; 2024 Jun; 146(22):15640-15647. PubMed ID: 38771765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Principles and Methods for the Rational Design of Core-Shell Nanoparticle Catalysts with Ultralow Noble Metal Loadings.
    Hunt ST; Román-Leshkov Y
    Acc Chem Res; 2018 May; 51(5):1054-1062. PubMed ID: 29510023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulating Excess Electrons in Reducible Metal Oxides for Enhanced Oxygen Evolution Reaction Activity: A Mini-Review.
    Huang X; Xu H
    Chemphyschem; 2024 Mar; 25(6):e202400081. PubMed ID: 38303551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the Reactivity of Layered Transition-Metal Sulfides: A Single Electronic Descriptor for Structure and Adsorption.
    Tsai C; Chan K; Nørskov JK; Abild-Pedersen F
    J Phys Chem Lett; 2014 Nov; 5(21):3884-9. PubMed ID: 26278764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design of metal-based nanocomposite catalysts for enhancing their stability in solid acid catalysis.
    Lei Z; Jia M
    Chem Commun (Camb); 2024 Sep; 60(78):10838-10853. PubMed ID: 39233633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction Descriptor for Catalytic Activity of Platinum Nanoparticles/Metal-Organic Framework Composites.
    Qin P; Yan J; Zhang W; Pan T; Zhang X; Huang W; Zhang W; Fu Y; Shen Y; Huo F
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38325-38332. PubMed ID: 34365788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition-Metal-Boron Intermetallics with Strong Interatomic d-sp Orbital Hybridization for High-Performance Electrocatalysis.
    Ai X; Zou X; Chen H; Su Y; Feng X; Li Q; Liu Y; Zhang Y; Zou X
    Angew Chem Int Ed Engl; 2020 Mar; 59(10):3961-3965. PubMed ID: 31899847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling Transition Metal Catalysts with Ir for Enhanced Electrochemical Water Splitting Activity.
    Yang X; Liu Y; Guo R; Xiao J
    Chem Rec; 2022 Dec; 22(12):e202200176. PubMed ID: 36000851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical roadmap for the best oxygen reduction activity in two-dimensional transition metal tellurides.
    Yang X; Liu H; Qu Z; Xie Y; Ma Y
    Chem Sci; 2022 Sep; 13(37):11048-11057. PubMed ID: 36320469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and Electronic Descriptors of Catalytic Activity of Graphene-Based Materials: First-Principles Theoretical Analysis.
    Sinthika S; Waghmare UV; Thapa R
    Small; 2018 Mar; 14(10):. PubMed ID: 29282859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogenation and dehydrogenation iron pincer catalysts capable of metal-ligand cooperation by aromatization/dearomatization.
    Zell T; Milstein D
    Acc Chem Res; 2015 Jul; 48(7):1979-94. PubMed ID: 26079678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.