These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 35758229)
1. Transfer learning in proteins: evaluating novel protein learned representations for bioinformatics tasks. Fenoy E; Edera AA; Stegmayer G Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35758229 [TBL] [Abstract][Full Text] [Related]
2. 16S rRNA sequence embeddings: Meaningful numeric feature representations of nucleotide sequences that are convenient for downstream analyses. Woloszynek S; Zhao Z; Chen J; Rosen GL PLoS Comput Biol; 2019 Feb; 15(2):e1006721. PubMed ID: 30807567 [TBL] [Abstract][Full Text] [Related]
3. Learned protein embeddings for machine learning. Yang KK; Wu Z; Bedbrook CN; Arnold FH Bioinformatics; 2018 Aug; 34(15):2642-2648. PubMed ID: 29584811 [TBL] [Abstract][Full Text] [Related]
4. How to approach machine learning-based prediction of drug/compound-target interactions. Atas Guvenilir H; Doğan T J Cheminform; 2023 Feb; 15(1):16. PubMed ID: 36747300 [TBL] [Abstract][Full Text] [Related]
5. Probabilistic variable-length segmentation of protein sequences for discriminative motif discovery (DiMotif) and sequence embedding (ProtVecX). Asgari E; McHardy AC; Mofrad MRK Sci Rep; 2019 Mar; 9(1):3577. PubMed ID: 30837494 [TBL] [Abstract][Full Text] [Related]
6. Unsupervised Representation Learning for Proteochemometric Modeling. Kim PT; Winter R; Clevert DA Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884688 [TBL] [Abstract][Full Text] [Related]
7. Predicting novel microRNA: a comprehensive comparison of machine learning approaches. Stegmayer G; Di Persia LE; Rubiolo M; Gerard M; Pividori M; Yones C; Bugnon LA; Rodriguez T; Raad J; Milone DH Brief Bioinform; 2019 Sep; 20(5):1607-1620. PubMed ID: 29800232 [TBL] [Abstract][Full Text] [Related]
8. A Transferability-Based Method for Evaluating the Protein Representation Learning. Hu F; Zhang W; Huang H; Li W; Li Y; Yin P IEEE J Biomed Health Inform; 2024 May; 28(5):3158-3166. PubMed ID: 38416611 [TBL] [Abstract][Full Text] [Related]
9. Modeling aspects of the language of life through transfer-learning protein sequences. Heinzinger M; Elnaggar A; Wang Y; Dallago C; Nechaev D; Matthes F; Rost B BMC Bioinformatics; 2019 Dec; 20(1):723. PubMed ID: 31847804 [TBL] [Abstract][Full Text] [Related]
10. Graph representation learning in bioinformatics: trends, methods and applications. Yi HC; You ZH; Huang DS; Kwoh CK Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34471921 [TBL] [Abstract][Full Text] [Related]
11. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features. Zhou H; Yang Y; Shen HB Bioinformatics; 2017 Mar; 33(6):843-853. PubMed ID: 27993784 [TBL] [Abstract][Full Text] [Related]
12. Graph2GO: a multi-modal attributed network embedding method for inferring protein functions. Fan K; Guan Y; Zhang Y Gigascience; 2020 Aug; 9(8):. PubMed ID: 32770210 [TBL] [Abstract][Full Text] [Related]
13. When Protein Structure Embedding Meets Large Language Models. Ali S; Chourasia P; Patterson M Genes (Basel); 2023 Dec; 15(1):. PubMed ID: 38254915 [TBL] [Abstract][Full Text] [Related]
14. UMPred-FRL: A New Approach for Accurate Prediction of Umami Peptides Using Feature Representation Learning. Charoenkwan P; Nantasenamat C; Hasan MM; Moni MA; Manavalan B; Shoombuatong W Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884927 [TBL] [Abstract][Full Text] [Related]
15. Learning supervised embeddings for large scale sequence comparisons. Kimothi D; Biyani P; Hogan JM; Soni A; Kelly W PLoS One; 2020; 15(3):e0216636. PubMed ID: 32168338 [TBL] [Abstract][Full Text] [Related]
16. Sequence representation approaches for sequence-based protein prediction tasks that use deep learning. Cui F; Zhang Z; Zou Q Brief Funct Genomics; 2021 Mar; 20(1):61-73. PubMed ID: 33527980 [TBL] [Abstract][Full Text] [Related]
17. Accurate and efficient protein embedding using multi-teacher distillation learning. Shang J; Peng C; Ji Y; Guan J; Cai D; Tang X; Sun Y Bioinformatics; 2024 Sep; 40(9):. PubMed ID: 39316715 [TBL] [Abstract][Full Text] [Related]
18. GoVec: Gene Ontology Representation Learning Using Weighted Heterogeneous Graph and Meta-Path. Nourani E J Comput Biol; 2021 Dec; 28(12):1196-1207. PubMed ID: 34847734 [TBL] [Abstract][Full Text] [Related]
19. Using molecular embeddings in QSAR modeling: does it make a difference? Sabando MV; Ponzoni I; Milios EE; Soto AJ Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34498670 [TBL] [Abstract][Full Text] [Related]
20. Using Language Representation Learning Approach to Efficiently Identify Protein Complex Categories in Electron Transport Chain. Nguyen TT; Le NQ; Ho QT; Phan DV; Ou YY Mol Inform; 2020 Oct; 39(10):e2000033. PubMed ID: 32598045 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]