BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 35758233)

  • 1. The intersection between circadian and heat-responsive regulatory networks controls plant responses to increasing temperatures.
    Laosuntisuk K; Doherty CJ
    Biochem Soc Trans; 2022 Jun; 50(3):1151-1165. PubMed ID: 35758233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arabidopsis EARLY FLOWERING 3 controls temperature responsiveness of the circadian clock independently of the evening complex.
    Zhu Z; Quint M; Anwer MU
    J Exp Bot; 2022 Jan; 73(3):1049-1061. PubMed ID: 34698833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. REVEILLE 7 inhibits the expression of the circadian clock gene EARLY FLOWERING 4 to fine-tune hypocotyl growth in response to warm temperatures.
    Tian YY; Li W; Wang MJ; Li JY; Davis SJ; Liu JX
    J Integr Plant Biol; 2022 Jul; 64(7):1310-1324. PubMed ID: 35603836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gibberellin driven growth in elf3 mutants requires PIF4 and PIF5.
    Filo J; Wu A; Eliason E; Richardson T; Thines BC; Harmon FG
    Plant Signal Behav; 2015; 10(3):e992707. PubMed ID: 25738547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The E3 ligase XBAT35 mediates thermoresponsive hypocotyl growth by targeting ELF3 for degradation in Arabidopsis.
    Zhang LL; Li W; Tian YY; Davis SJ; Liu JX
    J Integr Plant Biol; 2021 Jun; 63(6):1097-1103. PubMed ID: 33963671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex epistatic interactions between ELF3, PRR9, and PRR7 regulate the circadian clock and plant physiology.
    Yuan L; Avello P; Zhu Z; Lock SCL; McCarthy K; Redmond EJ; Davis AM; Song Y; Ezer D; Pitchford JW; Quint M; Xie Q; Xu X; Davis SJ; Ronald J
    Genetics; 2024 Mar; 226(3):. PubMed ID: 38142447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring Hypocotyl Length in Arabidopsis.
    Ronald J; Davis SJ
    Methods Mol Biol; 2022; 2398():99-106. PubMed ID: 34674171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. External coincidence model for hypocotyl thermomorphogenesis.
    Park YJ; Park CM
    Plant Signal Behav; 2018 Apr; 13(4):e1327498. PubMed ID: 28532231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal repression of core circadian genes is mediated through EARLY FLOWERING 3 in Arabidopsis.
    Dixon LE; Knox K; Kozma-Bognar L; Southern MM; Pokhilko A; Millar AJ
    Curr Biol; 2011 Jan; 21(2):120-5. PubMed ID: 21236675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular and functional dissection of EARLY-FLOWERING 3 (ELF3) and ELF4 in Arabidopsis.
    Zhao H; Xu D; Tian T; Kong F; Lin K; Gan S; Zhang H; Li G
    Plant Sci; 2021 Feb; 303():110786. PubMed ID: 33487361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A circadian clock- and PIF4-mediated double coincidence mechanism is implicated in the thermosensitive photoperiodic control of plant architectures in Arabidopsis thaliana.
    Nomoto Y; Kubozono S; Miyachi M; Yamashino T; Nakamichi N; Mizuno T
    Plant Cell Physiol; 2012 Nov; 53(11):1965-73. PubMed ID: 23037004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Independent roles for EARLY FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time.
    Kim WY; Hicks KA; Somers DE
    Plant Physiol; 2005 Nov; 139(3):1557-69. PubMed ID: 16258016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis.
    Jung JH; Barbosa AD; Hutin S; Kumita JR; Gao M; Derwort D; Silva CS; Lai X; Pierre E; Geng F; Kim SB; Baek S; Zubieta C; Jaeger KE; Wigge PA
    Nature; 2020 Sep; 585(7824):256-260. PubMed ID: 32848244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ELF3 controls thermoresponsive growth in Arabidopsis.
    Box MS; Huang BE; Domijan M; Jaeger KE; Khattak AK; Yoo SJ; Sedivy EL; Jones DM; Hearn TJ; Webb AAR; Grant A; Locke JCW; Wigge PA
    Curr Biol; 2015 Jan; 25(2):194-199. PubMed ID: 25557663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling the widespread effects of TOC1 signalling on the plant circadian clock and its outputs.
    Pokhilko A; Mas P; Millar AJ
    BMC Syst Biol; 2013 Mar; 7():23. PubMed ID: 23506153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis.
    Portolés S; Más P
    PLoS Genet; 2010 Nov; 6(11):e1001201. PubMed ID: 21079791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A competition-attenuation mechanism modulates thermoresponsive growth at warm temperatures in plants.
    Li W; Tian YY; Li JY; Yuan L; Zhang LL; Wang ZY; Xu X; Davis SJ; Liu JX
    New Phytol; 2023 Jan; 237(1):177-191. PubMed ID: 36028981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CCA1 alternative splicing as a way of linking the circadian clock to temperature response in Arabidopsis.
    Park MJ; Seo PJ; Park CM
    Plant Signal Behav; 2012 Sep; 7(9):1194-6. PubMed ID: 22899064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Arabidopsis sickle Mutant Exhibits Altered Circadian Clock Responses to Cool Temperatures and Temperature-Dependent Alternative Splicing.
    Marshall CM; Tartaglio V; Duarte M; Harmon FG
    Plant Cell; 2016 Oct; 28(10):2560-2575. PubMed ID: 27624757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature.
    Seaton DD; Smith RW; Song YH; MacGregor DR; Stewart K; Steel G; Foreman J; Penfield S; Imaizumi T; Millar AJ; Halliday KJ
    Mol Syst Biol; 2015 Jan; 11(1):776. PubMed ID: 25600997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.