BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 35758532)

  • 1. Designing Nanoengineered Photocatalysts for Hydrogen Generation by Water Splitting and Conversion of Carbon Dioxide to Clean Fuels.
    Bhosale R; Debnath B; Ogale S
    Chem Rec; 2022 Sep; 22(9):e202200110. PubMed ID: 35758532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiconductor Nanomaterial Photocatalysts for Water-Splitting Hydrogen Production: The Holy Grail of Converting Solar Energy to Fuel.
    Mohsin M; Ishaq T; Bhatti IA; Maryam ; Jilani A; Melaibari AA; Abu-Hamdeh NH
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced nanomaterials for highly efficient CO
    Nautiyal R; Tavar D; Suryavanshi U; Singh G; Singh A; Vinu A; Mane GP
    Sci Technol Adv Mater; 2022; 23(1):866-894. PubMed ID: 36506822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hetero-Motif Molecular Junction Photocatalysts: A New Frontier in Artificial Photosynthesis.
    Zhang L; Liu J; Lan YQ
    Acc Chem Res; 2024 Mar; 57(6):870-883. PubMed ID: 38424009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Functionalization of Visible-Light-Driven Water-Splitting Photocatalysts.
    Kawawaki T; Kawachi M; Yazaki D; Akinaga Y; Hirayama D; Negishi Y
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications.
    Kumar S; Kumar A; Bahuguna A; Sharma V; Krishnan V
    Beilstein J Nanotechnol; 2017; 8():1571-1600. PubMed ID: 28884063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research status, challenges and future prospects of renewable synthetic fuel catalysts for CO
    Chen Y; Guan B; Wu X; Guo J; Ma Z; Zhang J; Jiang X; Bao S; Cao Y; Yin C; Ai D; Chen Y; Lin H; Huang Z
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11246-11271. PubMed ID: 36517610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights on Carbon Neutrality by Photocatalytic Conversion of Small Molecules into Value-Added Chemicals or Fuels.
    Jiao H; Wang C; Xiong L; Tang J
    Acc Mater Res; 2022 Dec; 3(12):1206-1219. PubMed ID: 36583010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semiconductor Quantum Dots: An Emerging Candidate for CO
    Wu HL; Li XB; Tung CH; Wu LZ
    Adv Mater; 2019 Sep; 31(36):e1900709. PubMed ID: 31271262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advancement of the Current Aspects of g-C
    Hayat A; Sohail M; Ali Shah Syed J; Al-Sehemi AG; Mohammed MH; Al-Ghamdi AA; Taha TA; Salem AlSalem H; Alenad AM; Amin MA; Palamanit A; Liu C; Nawawi WI; Tariq Saeed Chani M; Muzibur Rahman M
    Chem Rec; 2022 Jul; 22(7):e202100310. PubMed ID: 35138017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon-based photocatalysts for hydrogen production: A review.
    Li Z; Li K; Du P; Mehmandoust M; Karimi F; Erk N
    Chemosphere; 2022 Dec; 308(Pt 1):135998. PubMed ID: 35973496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-Based Photocatalysts for Solar-Fuel Generation.
    Xiang Q; Cheng B; Yu J
    Angew Chem Int Ed Engl; 2015 Sep; 54(39):11350-66. PubMed ID: 26079429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon-based nanomaterials: in the quest of alternative metal-free photocatalysts for solar water splitting.
    Kundu S; Bramhaiah K; Bhattacharyya S
    Nanoscale Adv; 2020 Nov; 2(11):5130-5151. PubMed ID: 36132049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent progress in ZnCr and NiCr layered double hydroxides and based photocatalysts for water treatment and clean energy production.
    Rana S; Kumar A; Lai CW; Sharma G; Dhiman P
    Chemosphere; 2024 May; 356():141800. PubMed ID: 38554860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymeric Carbon Nitride-Derived Photocatalysts for Water Splitting and Nitrogen Fixation.
    Zhang D; He W; Ye J; Gao X; Wang D; Song J
    Small; 2021 Apr; 17(13):e2005149. PubMed ID: 33690963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smart Utilization of Carbon Dots in Semiconductor Photocatalysis.
    Yu H; Shi R; Zhao Y; Waterhouse GI; Wu LZ; Tung CH; Zhang T
    Adv Mater; 2016 Nov; 28(43):9454-9477. PubMed ID: 27623955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment.
    Wang W; Tadé MO; Shao Z
    Chem Soc Rev; 2015 Aug; 44(15):5371-408. PubMed ID: 25976276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
    Regulacio MD; Han MY
    Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocatalysis and perovskite oxide-based materials: a remedy for a clean and sustainable future.
    Irshad M; Ain QT; Zaman M; Aslam MZ; Kousar N; Asim M; Rafique M; Siraj K; Tabish AN; Usman M; Hassan Farooq MU; Assiri MA; Imran M
    RSC Adv; 2022 Mar; 12(12):7009-7039. PubMed ID: 35424711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocatalytic Reduction of Carbon Dioxide on TiO
    Barrocas BT; Ambrožová N; Kočí K
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.