These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35758535)

  • 41. A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries.
    Guo S; Yu H; Jian Z; Liu P; Zhu Y; Guo X; Chen M; Ishida M; Zhou H
    ChemSusChem; 2014 Aug; 7(8):2115-9. PubMed ID: 24919424
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recent Advances of Bimetallic Sulfide Anodes for Sodium Ion Batteries.
    Huang Y; Xiong D; Li X; Maleki Kheimeh Sari H; Peng J; Li Y; Li Y; Li D; Sun Q; Sun X
    Front Chem; 2020; 8():353. PubMed ID: 32435632
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stretchable Energy Storage Devices Based on Carbon Materials.
    Li L; Wang L; Ye T; Peng H; Zhang Y
    Small; 2021 Dec; 17(48):e2005015. PubMed ID: 33624928
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Single-file charge storage in conducting nanopores.
    Lee AA; Kondrat S; Kornyshev AA
    Phys Rev Lett; 2014 Jul; 113(4):048701. PubMed ID: 25105658
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Storage Mechanism of Alkali Metal Ions in the Hard Carbon Anode: an Electrochemical Viewpoint.
    Huang Y; Wang Y; Bai P; Xu Y
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38441-38449. PubMed ID: 34344152
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir.
    Zhu H; Jia Z; Chen Y; Weadock N; Wan J; Vaaland O; Han X; Li T; Hu L
    Nano Lett; 2013 Jul; 13(7):3093-100. PubMed ID: 23718129
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modulating the Graphitic Domains and Pore Structure of Corncob-Derived Hard Carbons by Pyrolysis to Improve Sodium Storage.
    Song NJ; Guo N; Ma C; Zhao Y; Li W; Li B
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110829
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phosphate Framework Electrode Materials for Sodium Ion Batteries.
    Fang Y; Zhang J; Xiao L; Ai X; Cao Y; Yang H
    Adv Sci (Weinh); 2017 May; 4(5):1600392. PubMed ID: 28546907
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sn-Cu nanocomposite anodes for rechargeable sodium-ion batteries.
    Lin YM; Abel PR; Gupta A; Goodenough JB; Heller A; Mullins CB
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8273-7. PubMed ID: 23957266
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rational Design of Carbon Nanomaterials for Electrochemical Sodium Storage and Capture.
    Kim J; Choi MS; Shin KH; Kota M; Kang Y; Lee S; Lee JY; Park HS
    Adv Mater; 2019 Aug; 31(34):e1803444. PubMed ID: 31012183
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Free-standing Reduced Graphene Oxide/carbon Nanotube Paper for Flexible Sodium-ion Battery Applications.
    Hao Y; Wang C
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32102412
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Introducing the Solvent Co-Intercalation Mechanism for Hard Carbon with Ultrafast Sodium Storage.
    Jiang N; Chen L; Jiang H; Hu Y; Li C
    Small; 2022 Apr; 18(15):e2108092. PubMed ID: 35229452
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life.
    Dong X; Chen L; Liu J; Haller S; Wang Y; Xia Y
    Sci Adv; 2016 Jan; 2(1):e1501038. PubMed ID: 26844298
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of Local Atomic Structure on Sodium Ion Storage in Hard Amorphous Carbon.
    Han J; Johnson I; Lu Z; Kudo A; Chen M
    Nano Lett; 2021 Aug; 21(15):6504-6510. PubMed ID: 34096730
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Na-ion batteries based on the inorganic BN nanocluster anodes: DFT studies.
    Nejati K; Hosseinian A; Bekhradnia A; Vessally E; Edjlali L
    J Mol Graph Model; 2017 Jun; 74():1-7. PubMed ID: 28324756
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Novel Approach Through the Harmonized Sulfur in Disordered Carbon Structure for High-Efficiency Sodium-Ion Exchange.
    Kim H; Kim DY; Zen S; Kang J; Takeuchi N
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43750-43760. PubMed ID: 32845607
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cellulose: Characteristics and applications for rechargeable batteries.
    Muddasar M; Beaucamp A; Culebras M; Collins MN
    Int J Biol Macromol; 2022 Oct; 219():788-803. PubMed ID: 35963345
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hierarchical Nitrogen-Doped Porous Carbon Microspheres as Anode for High Performance Sodium Ion Batteries.
    Xu K; Pan Q; Zheng F; Zhong G; Wang C; Wu S; Yang C
    Front Chem; 2019; 7():733. PubMed ID: 31737606
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Citrus-Peel-Derived, Nanoporous Carbon Nanosheets Containing Redox-Active Heteroatoms for Sodium-Ion Storage.
    Kim NR; Yun YS; Song MY; Hong SJ; Kang M; Leal C; Park YW; Jin HJ
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3175-81. PubMed ID: 26754183
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Alternative lithium-ion battery using biomass-derived carbons as environmentally sustainable anode.
    Hernández-Rentero C; Marangon V; Olivares-Marín M; Gómez-Serrano V; Caballero Á; Morales J; Hassoun J
    J Colloid Interface Sci; 2020 Aug; 573():396-408. PubMed ID: 32304949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.