These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35758535)

  • 61. Achieving Slope-Reigned Na-Ion Storage in Carbon Nanofibers by Constructing Defect-Rich Texture by a Cu-Activation Strategy.
    Guo X; Xue Y; Zhou H; Weng Y; Zhou J
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2407-2416. PubMed ID: 31851485
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation.
    Yu X; Pan H; Wan W; Ma C; Bai J; Meng Q; Ehrlich SN; Hu YS; Yang XQ
    Nano Lett; 2013 Oct; 13(10):4721-7. PubMed ID: 24053585
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Comparison between Na-Ion and Li-Ion Cells: Understanding the Critical Role of the Cathodes Stability and the Anodes Pretreatment on the Cells Behavior.
    de la Llave E; Borgel V; Park KJ; Hwang JY; Sun YK; Hartmann P; Chesneau FF; Aurbach D
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1867-75. PubMed ID: 26642926
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sodium-Ion Storage in Pyroprotein-Based Carbon Nanoplates.
    Yun YS; Park KY; Lee B; Cho SY; Park YU; Hong SJ; Kim BH; Gwon H; Kim H; Lee S; Park YW; Jin HJ; Kang K
    Adv Mater; 2015 Nov; 27(43):6914-21. PubMed ID: 26421382
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Sulfur-Rich (NH
    Ding S; Zhou B; Chen C; Huang Z; Li P; Wang S; Cao G; Zhang M
    ACS Nano; 2020 Aug; 14(8):9626-9636. PubMed ID: 32786231
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Soft-Carbon-Coated, Free-Standing, Low-Defect, Hard-Carbon Anode To Achieve a 94% Initial Coulombic Efficiency for Sodium-Ion Batteries.
    He XX; Zhao JH; Lai WH; Li R; Yang Z; Xu CM; Dai Y; Gao Y; Liu XH; Li L; Xu G; Qiao Y; Chou SL; Wu M
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44358-44368. PubMed ID: 34506123
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Extra Sodiation Sites in Hard Carbon for High Performance Sodium Ion Batteries.
    Gan Q; Qin N; Gu S; Wang Z; Li Z; Liao K; Zhang K; Lu L; Xu Z; Lu Z
    Small Methods; 2021 Sep; 5(9):e2100580. PubMed ID: 34928046
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Biomass-Derived Carbons for Sodium-Ion Batteries and Sodium-Ion Capacitors.
    Zhu J; Roscow J; Chandrasekaran S; Deng L; Zhang P; He T; Wang K; Huang L
    ChemSusChem; 2020 Mar; 13(6):1275-1295. PubMed ID: 32061148
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Limitations of disordered carbons obtained from biomass as anodes for real lithium-ion batteries.
    Caballero A; Hernán L; Morales J
    ChemSusChem; 2011 May; 4(5):658-63. PubMed ID: 21567976
    [TBL] [Abstract][Full Text] [Related]  

  • 70. An Adsorption-Insertion Mechanism of Potassium in Soft Carbon.
    Wu S; Song Y; Lu C; Yang T; Yuan S; Tian X; Liu Z
    Small; 2022 Jan; 18(4):e2105275. PubMed ID: 34841653
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Regulating Sodium Deposition through Gradiently-Graphitized Framework for Dendrite-Free Na Metal Anode.
    Sun Z; Ye Y; Zhu J; Zhou E; Xu J; Liu M; Kong X; Jin S; Ji H
    Small; 2022 May; 18(18):e2107199. PubMed ID: 35373497
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries.
    Wang HG; Wu Z; Meng FL; Ma DL; Huang XL; Wang LM; Zhang XB
    ChemSusChem; 2013 Jan; 6(1):56-60. PubMed ID: 23225752
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Co
    Zhao Y; Pang Q; Wei Y; Wei L; Ju Y; Zou B; Gao Y; Chen G
    ChemSusChem; 2017 Dec; 10(23):4778-4785. PubMed ID: 28873282
    [TBL] [Abstract][Full Text] [Related]  

  • 74. In Situ-Formed Hierarchical Metal-Organic Flexible Cathode for High-Energy Sodium-Ion Batteries.
    Huang Y; Fang C; Zeng R; Liu Y; Zhang W; Wang Y; Liu Q; Huang Y
    ChemSusChem; 2017 Dec; 10(23):4704-4708. PubMed ID: 28891155
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Polymeric Redox-Active Electrodes for Sodium-Ion Batteries.
    Fernández N; Sánchez-Fontecoba P; Castillo-Martínez E; Carretero-González J; Rojo T; Armand M
    ChemSusChem; 2018 Jan; 11(1):311-319. PubMed ID: 28834226
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A rational microstructure design of SnS
    Zhao Y; Guo B; Yao Q; Li J; Zhang J; Hou K; Guan L
    Nanoscale; 2018 May; 10(17):7999-8008. PubMed ID: 29666849
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Alloy-Based Anode Materials toward Advanced Sodium-Ion Batteries.
    Lao M; Zhang Y; Luo W; Yan Q; Sun W; Dou SX
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28656595
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Controllable Synthesis of Novel Orderly Layered VMoS
    Yue X; Wang J; Xie Z; He Y; Liu Z; Liu C; Hao X; Abudula A; Guan G
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26046-26054. PubMed ID: 34029481
    [TBL] [Abstract][Full Text] [Related]  

  • 79. 3D Networked Tin Oxide/Graphene Aerogel with a Hierarchically Porous Architecture for High-Rate Performance Sodium-Ion Batteries.
    Xie X; Chen S; Sun B; Wang C; Wang G
    ChemSusChem; 2015 Sep; 8(17):2948-55. PubMed ID: 26079600
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nanoporous carbon for electrochemical capacitive energy storage.
    Shao H; Wu YC; Lin Z; Taberna PL; Simon P
    Chem Soc Rev; 2020 May; 49(10):3005-3039. PubMed ID: 32285082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.