These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35758543)

  • 1. Tailored Inorganic-Organic Architectures via Metalloligands.
    Pachisia S; Gupta R
    Chem Rec; 2022 Nov; 22(11):e202200121. PubMed ID: 35758543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Architectural and catalytic aspects of designer materials built using metalloligands of pyridine-2,6-dicarboxamide based ligands.
    Pachisia S; Gupta R
    Dalton Trans; 2020 Nov; 49(42):14731-14748. PubMed ID: 33084678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clathrochelate Metalloligands in Supramolecular Chemistry and Materials Science.
    Jansze SM; Severin K
    Acc Chem Res; 2018 Sep; 51(9):2139-2147. PubMed ID: 30156828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecularly designed architectures--the metalloligand way.
    Kumar G; Gupta R
    Chem Soc Rev; 2013 Dec; 42(24):9403-53. PubMed ID: 24081027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalised Clathrochelate Complexes--New Building Blocks for Supramolecular Structures.
    Wise MD; Severin K
    Chimia (Aarau); 2015; 69(4):191-5. PubMed ID: 26668936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper based coordination polymers based on metalloligands: utilization as heterogeneous oxidation catalysts.
    Kumar G; Hussain F; Gupta R
    Dalton Trans; 2018 Dec; 47(47):16985-16994. PubMed ID: 30456402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Coordination and Supramolecular Chemistry of Gold Metalloligands.
    Gil-Rubio J; Vicente J
    Chemistry; 2018 Jan; 24(1):32-46. PubMed ID: 29027722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterometallic architectures based on the combination of heteroleptic copper and cobalt complexes with silver salts.
    Kilduff B; Pogozhev D; Baudron SA; Hosseini MW
    Inorg Chem; 2010 Dec; 49(23):11231-9. PubMed ID: 21067237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metallosupramolecular Structures Derived from a Series of Diphosphine-bridged Digold(I) Metalloligands with Terminal d-Penicillamine.
    Yoshinari N; Konno T
    Chem Rec; 2016 Jun; 16(3):1647-63. PubMed ID: 27231198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural evolution from preorganized mononuclear triazamacrocyclic metalloligands to polynuclear metallocages and heterometallic 2D layers: modular architectures, assembly tracking and magnetic properties.
    Lan BL; Luo AY; Shao B; Gao LN; Wei Q; Liang YN; Huang J; Zhang Z
    Dalton Trans; 2022 Nov; 51(42):16158-16169. PubMed ID: 36205259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixed-Metal Coordination Cages Constructed with Pyridyl-Functionalized β-Diketonate Metalloligands: Syntheses, Structures and Host-Guest Properties.
    Zhang YY; Zhang L; Lin YJ; Jin GX
    Chemistry; 2015 Oct; 21(42):14893-900. PubMed ID: 26315696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of Stimuli-Responsive Functional Materials via Hierarchical Self-Assembly Involving Coordination Interactions.
    Chen LJ; Yang HB
    Acc Chem Res; 2018 Nov; 51(11):2699-2710. PubMed ID: 30285407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of Macromolecular Pinwheels Using Predesigned Metalloligands.
    Wang J; Zhao H; Chen M; Jiang Z; Wang F; Wang G; Li K; Zhang Z; Liu D; Jiang Z; Wang P
    J Am Chem Soc; 2020 Dec; 142(52):21691-21701. PubMed ID: 33206521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible coordination polymers composed of luminescent ruthenium(II) metalloligands: importance of the position of the coordination site in metalloligands.
    Kobayashi A; Ohba T; Saitoh E; Suzuki Y; Noro S; Chang HC; Kato M
    Inorg Chem; 2014 Mar; 53(6):2910-21. PubMed ID: 24558962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal phosphonates incorporating metalloligands: assembly, structures and properties.
    Bao SS; Qin MF; Zheng LM
    Chem Commun (Camb); 2020 Oct; 56(81):12090-12108. PubMed ID: 32959036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gleaned snapshots on the road to coordination polymers: heterometallic architectures based on Cu(I) metallaclips and 2,2'-bis-dipyrrin metalloligands.
    Moutier F; Khalil AM; Baudron SA; Lescop C
    Chem Commun (Camb); 2020 Sep; 56(72):10501-10504. PubMed ID: 32776040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assemblies based on the "outer-surface interactions" of cucurbit[n]urils: new opportunities for supramolecular architectures and materials.
    Ni XL; Xiao X; Cong H; Zhu QJ; Xue SF; Tao Z
    Acc Chem Res; 2014 Apr; 47(4):1386-95. PubMed ID: 24673124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal complexes of cinchonine as chiral building blocks: a strategy for the construction of nanotubular architectures and helical coordination polymers.
    Kaczorowski T; Justyniak I; Lipińska T; Lipkowski J; Lewiński J
    J Am Chem Soc; 2009 Apr; 131(15):5393-5. PubMed ID: 19317472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homochiral nickel coordination polymers based on salen(Ni) metalloligands: synthesis, structure, and catalytic alkene epoxidation.
    Huang Y; Liu T; Lin J; Lü J; Lin Z; Cao R
    Inorg Chem; 2011 Mar; 50(6):2191-8. PubMed ID: 21332212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unique Ruthenium Bimetallic Supramolecular Cages From C
    Ryu JY; Wi EH; Pait M; Lee S; Stang PJ; Lee J
    Inorg Chem; 2017 May; 56(9):5471-5477. PubMed ID: 28418241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.