These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35758618)

  • 1. RUV-III-NB: normalization of single cell RNA-seq data.
    Salim A; Molania R; Wang J; De Livera A; Thijssen R; Speed TP
    Nucleic Acids Res; 2022 Sep; 50(16):e96. PubMed ID: 35758618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removing unwanted variation from large-scale RNA sequencing data with PRPS.
    Molania R; Foroutan M; Gagnon-Bartsch JA; Gandolfo LC; Jain A; Sinha A; Olshansky G; Dobrovic A; Papenfuss AT; Speed TP
    Nat Biotechnol; 2023 Jan; 41(1):82-95. PubMed ID: 36109686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robust removing unwanted variation-testing procedure via
    Hung H
    Biometrics; 2019 Jun; 75(2):650-662. PubMed ID: 30430537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Normalization of RNA-seq data using factor analysis of control genes or samples.
    Risso D; Ngai J; Speed TP; Dudoit S
    Nat Biotechnol; 2014 Sep; 32(9):896-902. PubMed ID: 25150836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing and removing the effect of unwanted technical variations in microbiome data.
    Fachrul M; Méric G; Inouye M; Pamp SJ; Salim A
    Sci Rep; 2022 Dec; 12(1):22236. PubMed ID: 36564466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new normalization for Nanostring nCounter gene expression data.
    Molania R; Gagnon-Bartsch JA; Dobrovic A; Speed TP
    Nucleic Acids Res; 2019 Jul; 47(12):6073-6083. PubMed ID: 31114909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using control genes to correct for unwanted variation in microarray data.
    Gagnon-Bartsch JA; Speed TP
    Biostatistics; 2012 Jul; 13(3):539-52. PubMed ID: 22101192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data.
    Li X; Brock GN; Rouchka EC; Cooper NGF; Wu D; O'Toole TE; Gill RS; Eteleeb AM; O'Brien L; Rai SN
    PLoS One; 2017; 12(5):e0176185. PubMed ID: 28459823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantile normalization of single-cell RNA-seq read counts without unique molecular identifiers.
    Townes FW; Irizarry RA
    Genome Biol; 2020 Jul; 21(1):160. PubMed ID: 32620142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. consensusDE: an R package for assessing consensus of multiple RNA-seq algorithms with RUV correction.
    Waardenberg AJ; Field MA
    PeerJ; 2019; 7():e8206. PubMed ID: 31844586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of Partial Least Squares improves the efficacy of removing unwanted variability in differential expression analyses based on RNA-Seq data.
    Chakraborty S
    Genomics; 2019 Jul; 111(4):893-898. PubMed ID: 29842947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How data analysis affects power, reproducibility and biological insight of RNA-seq studies in complex datasets.
    Peixoto L; Risso D; Poplawski SG; Wimmer ME; Speed TP; Wood MA; Abel T
    Nucleic Acids Res; 2015 Sep; 43(16):7664-74. PubMed ID: 26202970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UNIFYING AND GENERALIZING METHODS FOR REMOVING UNWANTED VARIATION BASED ON NEGATIVE CONTROLS.
    Gerard D; Stephens M
    Stat Sin; 2021 Jul; 31(3):1145-1166. PubMed ID: 38148787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Choice of library size normalization and statistical methods for differential gene expression analysis in balanced two-group comparisons for RNA-seq studies.
    Li X; Cooper NGF; O'Toole TE; Rouchka EC
    BMC Genomics; 2020 Jan; 21(1):75. PubMed ID: 31992223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NORMSEQ: a tool for evaluation, selection and visualization of RNA-Seq normalization methods.
    Scheepbouwer C; Hackenberg M; van Eijndhoven MAJ; Gerber A; Pegtel M; Gómez-Martín C
    Nucleic Acids Res; 2023 Jul; 51(W1):W372-W378. PubMed ID: 37216599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical detection of differentially expressed genes based on RNA-seq: from biological to phylogenetic replicates.
    Gu X
    Brief Bioinform; 2016 Mar; 17(2):243-8. PubMed ID: 26108230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Normalization of RNA-Seq data using adaptive trimmed mean with multi-reference.
    Singh V; Kirtipal N; Song B; Lee S
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38770720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmarking RNA-seq differential expression analysis methods using spike-in and simulation data.
    Baik B; Yoon S; Nam D
    PLoS One; 2020; 15(4):e0232271. PubMed ID: 32353015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GC-content normalization for RNA-Seq data.
    Risso D; Schwartz K; Sherlock G; Dudoit S
    BMC Bioinformatics; 2011 Dec; 12():480. PubMed ID: 22177264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytic Pearson residuals for normalization of single-cell RNA-seq UMI data.
    Lause J; Berens P; Kobak D
    Genome Biol; 2021 Sep; 22(1):258. PubMed ID: 34488842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.