These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35758790)

  • 1. DeepMHCII: a novel binding core-aware deep interaction model for accurate MHC-II peptide binding affinity prediction.
    You R; Qu W; Mamitsuka H; Zhu S
    Bioinformatics; 2022 Jun; 38(Suppl 1):i220-i228. PubMed ID: 35758790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepMHCI: an anchor position-aware deep interaction model for accurate MHC-I peptide binding affinity prediction.
    Qu W; You R; Mamitsuka H; Zhu S
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37669154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction.
    Nielsen M; Lund O
    BMC Bioinformatics; 2009 Sep; 10():296. PubMed ID: 19765293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method.
    Nielsen M; Lundegaard C; Lund O
    BMC Bioinformatics; 2007 Jul; 8():238. PubMed ID: 17608956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BERTMHC: improved MHC-peptide class II interaction prediction with transformer and multiple instance learning.
    Cheng J; Bendjama K; Rittner K; Malone B
    Bioinformatics; 2021 Nov; 37(22):4172-4179. PubMed ID: 34096999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RPEMHC: improved prediction of MHC-peptide binding affinity by a deep learning approach based on residue-residue pair encoding.
    Wang X; Wu T; Jiang Y; Chen T; Pan D; Jin Z; Xie J; Quan L; Lyu Q
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38175759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms.
    Rajapakse M; Schmidt B; Feng L; Brusic V
    BMC Bioinformatics; 2007 Nov; 8():459. PubMed ID: 18031584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting MHC-peptide binding affinity by differential boundary tree.
    Feng P; Zeng J; Ma J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i254-i261. PubMed ID: 34252932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification.
    Andreatta M; Karosiene E; Rasmussen M; Stryhn A; Buus S; Nielsen M
    Immunogenetics; 2015 Nov; 67(11-12):641-50. PubMed ID: 26416257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the human and nonobese diabetic mouse MHC class II immunopeptidome using protein language modeling.
    Hartout P; Počuča B; Méndez-García C; Schleberger C
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37527005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning a peptide-protein binding affinity predictor with kernel ridge regression.
    Giguère S; Marchand M; Laviolette F; Drouin A; Corbeil J
    BMC Bioinformatics; 2013 Mar; 14():82. PubMed ID: 23497081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MultiRTA: a simple yet reliable method for predicting peptide binding affinities for multiple class II MHC allotypes.
    Bordner AJ; Mittelmann HD
    BMC Bioinformatics; 2010 Sep; 11():482. PubMed ID: 20868497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ACME: pan-specific peptide-MHC class I binding prediction through attention-based deep neural networks.
    Hu Y; Wang Z; Hu H; Wan F; Chen L; Xiong Y; Wang X; Zhao D; Huang W; Zeng J
    Bioinformatics; 2019 Dec; 35(23):4946-4954. PubMed ID: 31120490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeepLigand: accurate prediction of MHC class I ligands using peptide embedding.
    Zeng H; Gifford DK
    Bioinformatics; 2019 Jul; 35(14):i278-i283. PubMed ID: 31510651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules.
    Zhang L; Chen Y; Wong HS; Zhou S; Mamitsuka H; Zhu S
    PLoS One; 2012; 7(2):e30483. PubMed ID: 22383964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning pan-specific model for interpretable MHC-I peptide binding prediction with improved attention mechanism.
    Jin J; Liu Z; Nasiri A; Cui Y; Louis SY; Zhang A; Zhao Y; Hu J
    Proteins; 2021 Jul; 89(7):866-883. PubMed ID: 33594723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MHC2SKpan: a novel kernel based approach for pan-specific MHC class II peptide binding prediction.
    Guo L; Luo C; Zhu S
    BMC Genomics; 2013; 14 Suppl 5(Suppl 5):S11. PubMed ID: 24564280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide length-based prediction of peptide-MHC class II binding.
    Chang ST; Ghosh D; Kirschner DE; Linderman JJ
    Bioinformatics; 2006 Nov; 22(22):2761-7. PubMed ID: 17000752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes.
    Zhao W; Sher X
    PLoS Comput Biol; 2018 Nov; 14(11):e1006457. PubMed ID: 30408041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.