These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. TITAN: T-cell receptor specificity prediction with bimodal attention networks. Weber A; Born J; Rodriguez Martínez M Bioinformatics; 2021 Jul; 37(Suppl_1):i237-i244. PubMed ID: 34252922 [TBL] [Abstract][Full Text] [Related]
3. Predicting TCR sequences for unseen antigen epitopes using structural and sequence features. Ji H; Wang XX; Zhang Q; Zhang C; Zhang HM Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38711371 [TBL] [Abstract][Full Text] [Related]
4. ClusTCR: a python interface for rapid clustering of large sets of CDR3 sequences with unknown antigen specificity. Valkiers S; Van Houcke M; Laukens K; Meysman P Bioinformatics; 2021 Dec; 37(24):4865-4867. PubMed ID: 34132766 [TBL] [Abstract][Full Text] [Related]
5. TSpred: a robust prediction framework for TCR-epitope interactions using paired chain TCR sequence data. Kim HY; Kim S; Park WY; Kim D Bioinformatics; 2024 Aug; 40(8):. PubMed ID: 39052940 [TBL] [Abstract][Full Text] [Related]
6. GTE: a graph learning framework for prediction of T-cell receptors and epitopes binding specificity. Jiang F; Guo Y; Ma H; Na S; Zhong W; Han Y; Wang T; Huang J Brief Bioinform; 2024 May; 25(4):. PubMed ID: 39007599 [TBL] [Abstract][Full Text] [Related]
7. Predicting TCR-Epitope Binding Specificity Using Deep Metric Learning and Multimodal Learning. Luu AM; Leistico JR; Miller T; Kim S; Song JS Genes (Basel); 2021 Apr; 12(4):. PubMed ID: 33920780 [TBL] [Abstract][Full Text] [Related]
8. On the viability of unsupervised T-cell receptor sequence clustering for epitope preference. Meysman P; De Neuter N; Gielis S; Bui Thi D; Ogunjimi B; Laukens K Bioinformatics; 2019 May; 35(9):1461-1468. PubMed ID: 30247624 [TBL] [Abstract][Full Text] [Related]
9. EPIC-TRACE: predicting TCR binding to unseen epitopes using attention and contextualized embeddings. Korpela D; Jokinen E; Dumitrescu A; Huuhtanen J; Mustjoki S; Lähdesmäki H Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38070156 [TBL] [Abstract][Full Text] [Related]
10. VDJdb: a curated database of T-cell receptor sequences with known antigen specificity. Shugay M; Bagaev DV; Zvyagin IV; Vroomans RM; Crawford JC; Dolton G; Komech EA; Sycheva AL; Koneva AE; Egorov ES; Eliseev AV; Van Dyk E; Dash P; Attaf M; Rius C; Ladell K; McLaren JE; Matthews KK; Clemens EB; Douek DC; Luciani F; van Baarle D; Kedzierska K; Kesmir C; Thomas PG; Price DA; Sewell AK; Chudakov DM Nucleic Acids Res; 2018 Jan; 46(D1):D419-D427. PubMed ID: 28977646 [TBL] [Abstract][Full Text] [Related]
11. BERTrand-peptide:TCR binding prediction using Bidirectional Encoder Representations from Transformers augmented with random TCR pairing. Myronov A; Mazzocco G; Król P; Plewczynski D Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37535685 [TBL] [Abstract][Full Text] [Related]
12. Investigating TCR-pMHC interactions for TCRs without identified epitopes by constructing a computational pipeline. Song K; Xu H; Shi Y; Zou X; Da LT; Hao J Int J Biol Macromol; 2024 Dec; 282(Pt 1):136502. PubMed ID: 39423970 [TBL] [Abstract][Full Text] [Related]
13. WAT3R: recovery of T-cell receptor variable regions from 3' single-cell RNA-sequencing. Ainciburu M; Morgan DM; DePasquale EAK; Love JC; Prósper F; van Galen P Bioinformatics; 2022 Jul; 38(14):3645-3647. PubMed ID: 35674381 [TBL] [Abstract][Full Text] [Related]
14. TCR-H: explainable machine learning prediction of T-cell receptor epitope binding on unseen datasets. T RR; Demerdash ONA; Smith JC Front Immunol; 2024; 15():1426173. PubMed ID: 39221256 [TBL] [Abstract][Full Text] [Related]
15. ATM-TCR: TCR-Epitope Binding Affinity Prediction Using a Multi-Head Self-Attention Model. Cai M; Bang S; Zhang P; Lee H Front Immunol; 2022; 13():893247. PubMed ID: 35874725 [TBL] [Abstract][Full Text] [Related]
16. DeepLION2: deep multi-instance contrastive learning framework enhancing the prediction of cancer-associated T cell receptors by attention strategy on motifs. Qian X; Yang G; Li F; Zhang X; Zhu X; Lai X; Xiao X; Wang T; Wang J Front Immunol; 2024; 15():1345586. PubMed ID: 38515756 [TBL] [Abstract][Full Text] [Related]
17. Tracking global changes induced in the CD4 T-cell receptor repertoire by immunization with a complex antigen using short stretches of CDR3 protein sequence. Thomas N; Best K; Cinelli M; Reich-Zeliger S; Gal H; Shifrut E; Madi A; Friedman N; Shawe-Taylor J; Chain B Bioinformatics; 2014 Nov; 30(22):3181-8. PubMed ID: 25095879 [TBL] [Abstract][Full Text] [Related]
18. TCRconv: predicting recognition between T cell receptors and epitopes using contextualized motifs. Jokinen E; Dumitrescu A; Huuhtanen J; Gligorijević V; Mustjoki S; Bonneau R; Heinonen M; Lähdesmäki H Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36477794 [TBL] [Abstract][Full Text] [Related]
19. TEPCAM: Prediction of T-cell receptor-epitope binding specificity via interpretable deep learning. Chen J; Zhao B; Lin S; Sun H; Mao X; Wang M; Chu Y; Hong L; Wei DQ; Li M; Xiong Y Protein Sci; 2024 Jan; 33(1):e4841. PubMed ID: 37983648 [TBL] [Abstract][Full Text] [Related]
20. TCRpower: quantifying the detection power of T-cell receptor sequencing with a novel computational pipeline calibrated by spike-in sequences. Dahal-Koirala S; Balaban G; Neumann RS; Scheffer L; Lundin KEA; Greiff V; Sollid LM; Qiao SW; Sandve GK Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35062022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]