These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 35758897)
41. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Báez-Santos YM; St John SE; Mesecar AD Antiviral Res; 2015 Mar; 115():21-38. PubMed ID: 25554382 [TBL] [Abstract][Full Text] [Related]
43. All-Trans Retinoic Acid Exhibits Antiviral Effect against SARS-CoV-2 by Inhibiting 3CLpro Activity. Morita T; Miyakawa K; Jeremiah SS; Yamaoka Y; Sada M; Kuniyoshi T; Yang J; Kimura H; Ryo A Viruses; 2021 Aug; 13(8):. PubMed ID: 34452533 [TBL] [Abstract][Full Text] [Related]
44. Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents. Mody V; Ho J; Wills S; Mawri A; Lawson L; Ebert MCCJC; Fortin GM; Rayalam S; Taval S Commun Biol; 2021 Jan; 4(1):93. PubMed ID: 33473151 [TBL] [Abstract][Full Text] [Related]
45. A novel class of broad-spectrum active-site-directed 3C-like protease inhibitors with nanomolar antiviral activity against highly immune-evasive SARS-CoV-2 Omicron subvariants. Pérez-Vargas J; Worrall LJ; Olmstead AD; Ton AT; Lee J; Villanueva I; Thompson CAH; Dudek S; Ennis S; Smith JR; Shapira T; De Guzman J; Gang S; Ban F; Vuckovic M; Bielecki M; Kovacic S; Kenward C; Hong CY; Gordon DG; Levett PN; Krajden M; Leduc R; Boudreault PL; Niikura M; Paetzel M; Young RN; Cherkasov A; Strynadka NCJ; Jean F Emerg Microbes Infect; 2023 Dec; 12(2):2246594. PubMed ID: 37555275 [TBL] [Abstract][Full Text] [Related]
46. Broad-spectrum inhibitors against 3C-like proteases of feline coronaviruses and feline caliciviruses. Kim Y; Shivanna V; Narayanan S; Prior AM; Weerasekara S; Hua DH; Kankanamalage AC; Groutas WC; Chang KO J Virol; 2015 May; 89(9):4942-50. PubMed ID: 25694593 [TBL] [Abstract][Full Text] [Related]
47. Dimethyl sulfoxide reduces the stability but enhances catalytic activity of the main SARS-CoV-2 protease 3CLpro. Ferreira JC; Fadl S; Ilter M; Pekel H; Rezgui R; Sensoy O; Rabeh WM FASEB J; 2021 Aug; 35(8):e21774. PubMed ID: 34324734 [TBL] [Abstract][Full Text] [Related]
48. From Repurposing to Redesign: Optimization of Boceprevir to Highly Potent Inhibitors of the SARS-CoV-2 Main Protease. Göhl M; Zhang L; El Kilani H; Sun X; Zhang K; Brönstrup M; Hilgenfeld R Molecules; 2022 Jul; 27(13):. PubMed ID: 35807537 [TBL] [Abstract][Full Text] [Related]
49. Watuguly T; Bare Y; Ratih Tirto Sari D; Kustarini Samsuria I Pak J Biol Sci; 2022 Jan; 25(9):867-874. PubMed ID: 36098090 [TBL] [Abstract][Full Text] [Related]
50. Considerations for the discovery and development of 3-chymotrypsin-like cysteine protease inhibitors targeting SARS-CoV-2 infection. Vandyck K; Deval J Curr Opin Virol; 2021 Aug; 49():36-40. PubMed ID: 34029993 [TBL] [Abstract][Full Text] [Related]
52. Development of a colorimetric assay for the detection of SARS-CoV-2 3CLpro activity. Garland GD; Harvey RF; Mulroney TE; Monti M; Fuller S; Haigh R; Gerber PP; Barer MR; Matheson NJ; Willis AE Biochem J; 2022 Apr; 479(8):901-920. PubMed ID: 35380004 [TBL] [Abstract][Full Text] [Related]
53. Gain-of-Signal Assays for Probing Inhibition of SARS-CoV-2 M Moghadasi SA; Esler MA; Otsuka Y; Becker JT; Moraes SN; Anderson CB; Chamakuri S; Belica C; Wick C; Harki DA; Young DW; Scampavia L; Spicer TP; Shi K; Aihara H; Brown WL; Harris RS mBio; 2022 Jun; 13(3):e0078422. PubMed ID: 35471084 [TBL] [Abstract][Full Text] [Related]
54. Reconstruction of the unbinding pathways of noncovalent SARS-CoV and SARS-CoV-2 3CLpro inhibitors using unbiased molecular dynamics simulations. Noroozi Tiyoula F; Aryapour H PLoS One; 2022; 17(2):e0263251. PubMed ID: 35139108 [TBL] [Abstract][Full Text] [Related]
55. Finding potent inhibitors against SARS-CoV-2 main protease through virtual screening, ADMET, and molecular dynamics simulation studies. Roy R; Sk MF; Jonniya NA; Poddar S; Kar P J Biomol Struct Dyn; 2022 Sep; 40(14):6556-6568. PubMed ID: 33682642 [TBL] [Abstract][Full Text] [Related]
56. Flavonoids with inhibitory activity against SARS-CoV-2 3CLpro. Jo S; Kim S; Kim DY; Kim MS; Shin DH J Enzyme Inhib Med Chem; 2020 Dec; 35(1):1539-1544. PubMed ID: 32746637 [TBL] [Abstract][Full Text] [Related]
57. Discovery of SARS-CoV-2 3CL Wang Y; Xu B; Ma S; Wang H; Shang L; Zhu C; Ye S Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216507 [TBL] [Abstract][Full Text] [Related]
58. Diastereomeric Resolution Yields Highly Potent Inhibitor of SARS-CoV-2 Main Protease. Cooper MS; Zhang L; Ibrahim M; Zhang K; Sun X; Röske J; Göhl M; Brönstrup M; Cowell JK; Sauerhering L; Becker S; Vangeel L; Jochmans D; Neyts J; Rox K; Marsh GP; Maple HJ; Hilgenfeld R J Med Chem; 2022 Oct; 65(19):13328-13342. PubMed ID: 36179320 [TBL] [Abstract][Full Text] [Related]
59. Discovery of SARS-CoV-2 main protease covalent inhibitors from a DNA-encoded library selection. Ge R; Shen Z; Yin J; Chen W; Zhang Q; An Y; Tang D; Satz AL; Su W; Kuai L SLAS Discov; 2022 Mar; 27(2):79-85. PubMed ID: 35063690 [TBL] [Abstract][Full Text] [Related]
60. SARS-CoV and SARS-CoV-2 main protease residue interaction networks change when bound to inhibitor N3. Griffin JWD J Struct Biol; 2020 Sep; 211(3):107575. PubMed ID: 32653646 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]