BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 35759429)

  • 1. Benchmarking and Assessment of Eight
    Gupta AK; Kumar M
    OMICS; 2022 Jul; 26(7):372-381. PubMed ID: 35759429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Choice of assemblers has a critical impact on de novo assembly of SARS-CoV-2 genome and characterizing variants.
    Islam R; Raju RS; Tasnim N; Shihab IH; Bhuiyan MA; Araf Y; Islam T
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of nine popular de novo assemblers in microbial genome assembly.
    Forouzan E; Maleki MSM; Karkhane AA; Yakhchali B
    J Microbiol Methods; 2017 Dec; 143():32-37. PubMed ID: 28939423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clover: a clustering-oriented de novo assembler for Illumina sequences.
    Hsieh MF; Lu CL; Tang CY
    BMC Bioinformatics; 2020 Nov; 21(1):528. PubMed ID: 33203354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fragmentation and Coverage Variation in Viral Metagenome Assemblies, and Their Effect in Diversity Calculations.
    García-López R; Vázquez-Castellanos JF; Moya A
    Front Bioeng Biotechnol; 2015; 3():141. PubMed ID: 26442255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating de Bruijn graph assemblers on 454 transcriptomic data.
    Ren X; Liu T; Dong J; Sun L; Yang J; Zhu Y; Jin Q
    PLoS One; 2012; 7(12):e51188. PubMed ID: 23236450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GABenchToB: a genome assembly benchmark tuned on bacteria and benchtop sequencers.
    Jünemann S; Prior K; Albersmeier A; Albaum S; Kalinowski J; Goesmann A; Stoye J; Harmsen D
    PLoS One; 2014; 9(9):e107014. PubMed ID: 25198770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A practical comparison of de novo genome assembly software tools for next-generation sequencing technologies.
    Zhang W; Chen J; Yang Y; Tang Y; Shang J; Shen B
    PLoS One; 2011 Mar; 6(3):e17915. PubMed ID: 21423806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The complex task of choosing a de novo assembly: lessons from fungal genomes.
    Gallo JE; Muñoz JF; Misas E; McEwen JG; Clay OK
    Comput Biol Chem; 2014 Dec; 53 Pt A():97-107. PubMed ID: 25262360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of de novo assemblers for draft genomes: a case study with fungal genomes.
    Abbas MM; Malluhi QM; Balakrishnan P
    BMC Genomics; 2014; 15 Suppl 9(Suppl 9):S10. PubMed ID: 25521762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. InteMAP: Integrated metagenomic assembly pipeline for NGS short reads.
    Lai B; Wang F; Wang X; Duan L; Zhu H
    BMC Bioinformatics; 2015 Aug; 16():244. PubMed ID: 26250558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of optimum sequencing depth especially for de novo genome assembly of small genomes using next generation sequencing data.
    Desai A; Marwah VS; Yadav A; Jha V; Dhaygude K; Bangar U; Kulkarni V; Jere A
    PLoS One; 2013; 8(4):e60204. PubMed ID: 23593174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comparison of Bioinformatics Pipelines for Enrichment Illumina Next Generation Sequencing Systems in Detecting SARS-CoV-2 Virus Strains.
    Afiahayati ; Bernard S; Gunadi ; Wibawa H; Hakim MS; Marcellus ; Parikesit AA; Dewa CK; Sakakibara Y
    Genes (Basel); 2022 Jul; 13(8):. PubMed ID: 35893066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LMAS: evaluating metagenomic short de novo assembly methods through defined communities.
    Mendes CI; Vila-Cerqueira P; Motro Y; Moran-Gilad J; Carriço JA; Ramirez M
    Gigascience; 2022 Dec; 12():. PubMed ID: 36576131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallelized short read assembly of large genomes using de Bruijn graphs.
    Liu Y; Schmidt B; Maskell DL
    BMC Bioinformatics; 2011 Aug; 12():354. PubMed ID: 21867511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comprehensive Study of De Novo Genome Assemblers: Current Challenges and Future Prospective.
    Khan AR; Pervez MT; Babar ME; Naveed N; Shoaib M
    Evol Bioinform Online; 2018; 14():1176934318758650. PubMed ID: 29511353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BASE: a practical de novo assembler for large genomes using long NGS reads.
    Liu B; Liu CM; Li D; Li Y; Ting HF; Yiu SM; Luo R; Lam TW
    BMC Genomics; 2016 Aug; 17 Suppl 5(Suppl 5):499. PubMed ID: 27586129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strainline: full-length de novo viral haplotype reconstruction from noisy long reads.
    Luo X; Kang X; Schönhuth A
    Genome Biol; 2022 Jan; 23(1):29. PubMed ID: 35057847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the Impact of Assemblers on Virus Detection in a De Novo Metagenomic Analysis Pipeline.
    White DJ; Wang J; Hall RJ
    J Comput Biol; 2017 Sep; 24(9):874-881. PubMed ID: 28414526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.