BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35759600)

  • 1. Boosting Fast Adversarial Training With Learnable Adversarial Initialization.
    Jia X; Zhang Y; Wu B; Wang J; Cao X
    IEEE Trans Image Process; 2022; 31():4417-4430. PubMed ID: 35759600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast Adversarial Training With Adaptive Step Size.
    Huang Z; Fan Y; Liu C; Zhang W; Zhang Y; Salzmann M; Susstrunk S; Wang J
    IEEE Trans Image Process; 2023; 32():6102-6114. PubMed ID: 37883291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards improving fast adversarial training in multi-exit network.
    Chen S; Shen H; Wang R; Wang X
    Neural Netw; 2022 Jun; 150():1-11. PubMed ID: 35279625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robustifying Deep Networks for Medical Image Segmentation.
    Liu Z; Zhang J; Jog V; Loh PL; McMillan AB
    J Digit Imaging; 2021 Oct; 34(5):1279-1293. PubMed ID: 34545476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the Transferability of Adversarial Examples With a Noise Data Enhancement Framework and Random Erasing.
    Xie P; Shi S; Yang S; Qiao K; Liang N; Wang L; Chen J; Hu G; Yan B
    Front Neurorobot; 2021; 15():784053. PubMed ID: 34955802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gradient Correction for White-Box Adversarial Attacks.
    Liu H; Ge Z; Zhou Z; Shang F; Liu Y; Jiao L
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; PP():. PubMed ID: 37819820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Between-Class Adversarial Training for Improving Adversarial Robustness of Image Classification.
    Wang D; Jin W; Wu Y
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parameter-Transferred Wasserstein Generative Adversarial Network (PT-WGAN) for Low-Dose PET Image Denoising.
    Gong Y; Shan H; Teng Y; Tu N; Li M; Liang G; Wang G; Wang S
    IEEE Trans Radiat Plasma Med Sci; 2021 Mar; 5(2):213-223. PubMed ID: 35402757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adversarial attack vulnerability of medical image analysis systems: Unexplored factors.
    Bortsova G; González-Gonzalo C; Wetstein SC; Dubost F; Katramados I; Hogeweg L; Liefers B; van Ginneken B; Pluim JPW; Veta M; Sánchez CI; de Bruijne M
    Med Image Anal; 2021 Oct; 73():102141. PubMed ID: 34246850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network.
    Han L; Huang Y; Dou H; Wang S; Ahamad S; Luo H; Liu Q; Fan J; Zhang J
    Comput Methods Programs Biomed; 2020 Jun; 189():105275. PubMed ID: 31978805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HyGloadAttack: Hard-label black-box textual adversarial attacks via hybrid optimization.
    Liu Z; Xiong X; Li Y; Yu Y; Lu J; Zhang S; Xiong F
    Neural Netw; 2024 Jun; 178():106461. PubMed ID: 38906054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting adversarial robustness via self-paced adversarial training.
    He L; Ai Q; Yang X; Ren Y; Wang Q; Xu Z
    Neural Netw; 2023 Oct; 167():706-714. PubMed ID: 37729786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack and Learning.
    Wang H; Li G; Liu X; Lin L
    IEEE Trans Pattern Anal Mach Intell; 2022 Apr; 44(4):1725-1737. PubMed ID: 33074803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strengthening transferability of adversarial examples by adaptive inertia and amplitude spectrum dropout.
    Li H; Yu W; Huang H
    Neural Netw; 2023 Aug; 165():925-937. PubMed ID: 37441909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks.
    Zhang H; Xu T; Li H; Zhang S; Wang X; Huang X; Metaxas DN
    IEEE Trans Pattern Anal Mach Intell; 2019 Aug; 41(8):1947-1962. PubMed ID: 30010548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving Adversarial Robustness via Attention and Adversarial Logit Pairing.
    Li X; Goodman D; Liu J; Wei T; Dou D
    Front Artif Intell; 2021; 4():752831. PubMed ID: 35156010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Untargeted white-box adversarial attack to break into deep leaning based COVID-19 monitoring face mask detection system.
    Sheikh BUH; Zafar A
    Multimed Tools Appl; 2023 May; ():1-27. PubMed ID: 37362697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EIFDAA: Evaluation of an IDS with function-discarding adversarial attacks in the IIoT.
    Li S; Wang J; Wang Y; Zhou G; Zhao Y
    Heliyon; 2023 Feb; 9(2):e13520. PubMed ID: 36846700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep ConvNet: Non-Random Weight Initialization for Repeatable Determinism, Examined with FSGM.
    Rudd-Orthner RNM; Mihaylova L
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Adversarial Robustness of Deep Neural Networks via Adaptive Margin Evolution.
    Ma L; Liang L
    Neurocomputing (Amst); 2023 Sep; 551():. PubMed ID: 37587916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.