These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 35759604)
21. An autonomous drone for search and rescue in forests using airborne optical sectioning. Schedl DC; Kurmi I; Bimber O Sci Robot; 2021 Jun; 6(55):. PubMed ID: 34162744 [TBL] [Abstract][Full Text] [Related]
22. YOLO-IHD: Improved Real-Time Human Detection System for Indoor Drones. Kucukayan G; Karacan H Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339638 [TBL] [Abstract][Full Text] [Related]
23. Cognitive workload classification of law enforcement officers using physiological responses. Wozniak D; Zahabi M Appl Ergon; 2024 Sep; 119():104305. PubMed ID: 38733659 [TBL] [Abstract][Full Text] [Related]
24. Assessing cognitive mental workload via EEG signals and an ensemble deep learning classifier based on denoising autoencoders. Yang S; Yin Z; Wang Y; Zhang W; Wang Y; Zhang J Comput Biol Med; 2019 Jun; 109():159-170. PubMed ID: 31059900 [TBL] [Abstract][Full Text] [Related]
25. Pattern Classification of Instantaneous Cognitive Task-load Through GMM Clustering, Laplacian Eigenmap, and Ensemble SVMs. Zhang J; Yin Z; Wang R IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(4):947-965. PubMed ID: 27164601 [TBL] [Abstract][Full Text] [Related]
26. Mental Workload Estimation Based on Physiological Features for Pilot-UAV Teaming Applications. Singh G; Chanel CPC; Roy RN Front Hum Neurosci; 2021; 15():692878. PubMed ID: 34489660 [TBL] [Abstract][Full Text] [Related]
27. Simulation-Based Drone Assisted Search Operations in a River. Cicek M; Pasli S; Imamoglu M; Yadigaroglu M; Beser MF; Gunduz A Wilderness Environ Med; 2022 Sep; 33(3):311-317. PubMed ID: 35843856 [TBL] [Abstract][Full Text] [Related]
28. Detecting Human Actions in Drone Images Using YoloV5 and Stochastic Gradient Boosting. Ahmad T; Cavazza M; Matsuo Y; Prendinger H Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146369 [TBL] [Abstract][Full Text] [Related]
29. Learning Transferable Driven and Drone Assisted Sustainable and Robust Regional Disease Surveillance for Smart Healthcare. Jin Y; Qian Z; Gong S; Yang W IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):114-125. PubMed ID: 32804655 [TBL] [Abstract][Full Text] [Related]
30. Measuring Cognitive Workload Using Multimodal Sensors. Hirachan N; Mathews A; Romero J; Rojas RF Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4921-4924. PubMed ID: 36085818 [TBL] [Abstract][Full Text] [Related]
31. Investigating Ensemble Learning and Classifier Generalization in a Hybrid, Passive Brain-Computer Interface for Assessing Cognitive Workload. Klosterman SL; Eepp JR Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3543-3546. PubMed ID: 31946643 [TBL] [Abstract][Full Text] [Related]
32. Reliable Aerial Mobile Communications with RSRP & RSRQ Prediction Models for the Internet of Drones: A Machine Learning Approach. Behjati M; Zulkifley MA; Alobaidy HAH; Nordin R; Abdullah NF Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898026 [TBL] [Abstract][Full Text] [Related]
33. Perceived difficulty, flight information access, and performance of male and female novice drone operators. Peng L; Li KW Work; 2022; 72(4):1259-1268. PubMed ID: 35754250 [TBL] [Abstract][Full Text] [Related]
34. Unmanned aerial vehicle images in the machine learning for agave detection. Escobar-Flores JG; Sandoval S; Gámiz-Romero E Environ Sci Pollut Res Int; 2022 Sep; 29(41):61662-61673. PubMed ID: 35112260 [TBL] [Abstract][Full Text] [Related]
35. Subject-Specific Cognitive Workload Classification Using EEG-Based Functional Connectivity and Deep Learning. Gupta A; Siddhad G; Pandey V; Roy PP; Kim BG Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695921 [TBL] [Abstract][Full Text] [Related]
36. Analysis on security-related concerns of unmanned aerial vehicle: attacks, limitations, and recommendations. Siddiqi MA; Iwendi C; Jaroslava K; Anumbe N Math Biosci Eng; 2022 Jan; 19(3):2641-2670. PubMed ID: 35240800 [TBL] [Abstract][Full Text] [Related]
37. Context-Dependent Cognitive Workload Monitoring using Pupillometry for Control Room Operators to Prevent Overload. Bhavsar P IISE Trans Occup Ergon Hum Factors; 2022; 10(2):91-103. PubMed ID: 35575073 [TBL] [Abstract][Full Text] [Related]
38. Visual attention prediction improves performance of autonomous drone racing agents. Pfeiffer C; Wengeler S; Loquercio A; Scaramuzza D PLoS One; 2022; 17(3):e0264471. PubMed ID: 35231038 [TBL] [Abstract][Full Text] [Related]
39. Subjective and objective assessments of mental workload for UAV operations. Li KW; Lu Y; Li N Work; 2022; 72(1):291-301. PubMed ID: 35431209 [TBL] [Abstract][Full Text] [Related]
40. Research Trends in Collaborative Drones. Barbeau M; Garcia-Alfaro J; Kranakis E Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591011 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]