These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 35759644)

  • 21. Activity of a novel antimicrobial peptide against Pseudomonas aeruginosa biofilms.
    Beaudoin T; Stone TA; Glibowicka M; Adams C; Yau Y; Ahmadi S; Bear CE; Grasemann H; Waters V; Deber CM
    Sci Rep; 2018 Oct; 8(1):14728. PubMed ID: 30283025
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low-Dose Nitric Oxide as Targeted Anti-biofilm Adjunctive Therapy to Treat Chronic Pseudomonas aeruginosa Infection in Cystic Fibrosis.
    Howlin RP; Cathie K; Hall-Stoodley L; Cornelius V; Duignan C; Allan RN; Fernandez BO; Barraud N; Bruce KD; Jefferies J; Kelso M; Kjelleberg S; Rice SA; Rogers GB; Pink S; Smith C; Sukhtankar PS; Salib R; Legg J; Carroll M; Daniels T; Feelisch M; Stoodley P; Clarke SC; Connett G; Faust SN; Webb JS
    Mol Ther; 2017 Sep; 25(9):2104-2116. PubMed ID: 28750737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antimicrobial Treatment Provides a Competitive Advantage to Mycobacterium abscessus in a Dual-Species Biofilm with Pseudomonas aeruginosa.
    Rodríguez-Sevilla G; Crabbé A; García-Coca M; Aguilera-Correa JJ; Esteban J; Pérez-Jorge C
    Antimicrob Agents Chemother; 2019 Nov; 63(11):. PubMed ID: 31451500
    [TBL] [Abstract][Full Text] [Related]  

  • 24. P-113D, an antimicrobial peptide active against Pseudomonas aeruginosa, retains activity in the presence of sputum from cystic fibrosis patients.
    Sajjan US; Tran LT; Sole N; Rovaldi C; Akiyama A; Friden PM; Forstner JF; Rothstein DM
    Antimicrob Agents Chemother; 2001 Dec; 45(12):3437-44. PubMed ID: 11709321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activity of innate antimicrobial peptides and ivacaftor against clinical cystic fibrosis respiratory pathogens.
    Payne JE; Dubois AV; Ingram RJ; Weldon S; Taggart CC; Elborn JS; Tunney MM
    Int J Antimicrob Agents; 2017 Sep; 50(3):427-435. PubMed ID: 28666755
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A short D-enantiomeric antimicrobial peptide with potent immunomodulatory and antibiofilm activity against multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii.
    Mohamed MF; Brezden A; Mohammad H; Chmielewski J; Seleem MN
    Sci Rep; 2017 Jul; 7(1):6953. PubMed ID: 28761101
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Myxinidin-Derived Peptide against Biofilms Caused by Cystic Fibrosis Emerging Pathogens.
    Bellavita R; Maione A; Braccia S; Sinoca M; Galdiero S; Galdiero E; Falanga A
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834512
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Esculentin-1a-Derived Peptides Promote Clearance of Pseudomonas aeruginosa Internalized in Bronchial Cells of Cystic Fibrosis Patients and Lung Cell Migration: Biochemical Properties and a Plausible Mode of Action.
    Cappiello F; Di Grazia A; Segev-Zarko LA; Scali S; Ferrera L; Galietta L; Pini A; Shai Y; Di YP; Mangoni ML
    Antimicrob Agents Chemother; 2016 Dec; 60(12):7252-7262. PubMed ID: 27671059
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antimicrobial activity of fosfomycin and tobramycin in combination against cystic fibrosis pathogens under aerobic and anaerobic conditions.
    McCaughey G; McKevitt M; Elborn JS; Tunney MM
    J Cyst Fibros; 2012 May; 11(3):163-72. PubMed ID: 22138067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combination antibiotic susceptibility of biofilm-grown Burkholderia cepacia and Pseudomonas aeruginosa isolated from patients with pulmonary exacerbations of cystic fibrosis.
    Dales L; Ferris W; Vandemheen K; Aaron SD
    Eur J Clin Microbiol Infect Dis; 2009 Oct; 28(10):1275-9. PubMed ID: 19575248
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antibiofilm Activities of Borneol-Citral-Loaded Pickering Emulsions against Pseudomonas aeruginosa and Staphylococcus aureus in Physiologically Relevant Chronic Infection Models.
    Wang W; Bao X; Bové M; Rigole P; Meng X; Su J; Coenye T
    Microbiol Spectr; 2022 Oct; 10(5):e0169622. PubMed ID: 36194139
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antibiotic Efficacy Testing in an Ex vivo Model of Pseudomonas aeruginosa and Staphylococcus aureus Biofilms in the Cystic Fibrosis Lung.
    Harrington NE; Sweeney E; Alav I; Allen F; Moat J; Harrison F
    J Vis Exp; 2021 Jan; (167):. PubMed ID: 33554970
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reconciling Antimicrobial Susceptibility Testing and Clinical Response in Antimicrobial Treatment of Chronic Cystic Fibrosis Lung Infections.
    Waters VJ; Kidd TJ; Canton R; Ekkelenkamp MB; Johansen HK; LiPuma JJ; Bell SC; Elborn JS; Flume PA; VanDevanter DR; Gilligan P;
    Clin Infect Dis; 2019 Oct; 69(10):1812-1816. PubMed ID: 31056660
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Shear Stress on Pseudomonas aeruginosa Isolated from the Cystic Fibrosis Lung.
    Dingemans J; Monsieurs P; Yu SH; Crabbé A; Förstner KU; Malfroot A; Cornelis P; Van Houdt R
    mBio; 2016 Aug; 7(4):. PubMed ID: 27486191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antimicrobial efficacy of tobramycin polymeric nanoparticles for Pseudomonas aeruginosa infections in cystic fibrosis: formulation, characterisation and functionalisation with dornase alfa (DNase).
    Deacon J; Abdelghany SM; Quinn DJ; Schmid D; Megaw J; Donnelly RF; Jones DS; Kissenpfennig A; Elborn JS; Gilmore BF; Taggart CC; Scott CJ
    J Control Release; 2015 Jan; 198():55-61. PubMed ID: 25481442
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms of biofilm inhibition and degradation by antimicrobial peptides.
    Segev-Zarko L; Saar-Dover R; Brumfeld V; Mangoni ML; Shai Y
    Biochem J; 2015 Jun; 468(2):259-70. PubMed ID: 25761937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antibiotic susceptabilities of Pseudomonas aeruginosa isolates derived from patients with cystic fibrosis under aerobic, anaerobic, and biofilm conditions.
    Hill D; Rose B; Pajkos A; Robinson M; Bye P; Bell S; Elkins M; Thompson B; Macleod C; Aaron SD; Harbour C
    J Clin Microbiol; 2005 Oct; 43(10):5085-90. PubMed ID: 16207967
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization of colistin dosing regimen for cystic fibrosis patients with chronic Pseudomonas aeruginosa biofilm lung infections.
    Hengzhuang W; Green K; Pressler T; Skov M; Katzenstein TL; Wu X; Høiby N
    Pediatr Pulmonol; 2019 May; 54(5):575-580. PubMed ID: 30803159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antimicrobial activity of mul-1867, a novel antimicrobial compound, against multidrug-resistant Pseudomonas aeruginosa.
    Tetz G; Vikina D; Tetz V
    Ann Clin Microbiol Antimicrob; 2016 Mar; 15():19. PubMed ID: 27001074
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design SMAP29-LysPA26 as a Highly Efficient Artilysin against Pseudomonas aeruginosa with Bactericidal and Antibiofilm Activity.
    Wang T; Zheng Y; Dai J; Zhou J; Yu R; Zhang C
    Microbiol Spectr; 2021 Dec; 9(3):e0054621. PubMed ID: 34878337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.