These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35759992)

  • 41. Biologically motivated learning method for deep neural networks using hierarchical competitive learning.
    Shinozaki T
    Neural Netw; 2021 Dec; 144():271-278. PubMed ID: 34520937
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reconstruction of metabolic pathways for the cattle genome.
    Seo S; Lewin HA
    BMC Syst Biol; 2009 Mar; 3():33. PubMed ID: 19284618
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases.
    Caspi R; Billington R; Ferrer L; Foerster H; Fulcher CA; Keseler IM; Kothari A; Krummenacker M; Latendresse M; Mueller LA; Ong Q; Paley S; Subhraveti P; Weaver DS; Karp PD
    Nucleic Acids Res; 2016 Jan; 44(D1):D471-80. PubMed ID: 26527732
    [TBL] [Abstract][Full Text] [Related]  

  • 44. GeneralizedDTA: combining pre-training and multi-task learning to predict drug-target binding affinity for unknown drug discovery.
    Lin S; Shi C; Chen J
    BMC Bioinformatics; 2022 Sep; 23(1):367. PubMed ID: 36071406
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chronic gastritis classification using gastric X-ray images with a semi-supervised learning method based on tri-training.
    Li Z; Togo R; Ogawa T; Haseyama M
    Med Biol Eng Comput; 2020 Jun; 58(6):1239-1250. PubMed ID: 32221796
    [TBL] [Abstract][Full Text] [Related]  

  • 46. LeishCyc: a biochemical pathways database for Leishmania major.
    Doyle MA; MacRae JI; De Souza DP; Saunders EC; McConville MJ; Likić VA
    BMC Syst Biol; 2009 Jun; 3():57. PubMed ID: 19497128
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An Intelligent Diagnosis Method of Brain MRI Tumor Segmentation Using Deep Convolutional Neural Network and SVM Algorithm.
    Wu W; Li D; Du J; Gao X; Gu W; Zhao F; Feng X; Yan H
    Comput Math Methods Med; 2020; 2020():6789306. PubMed ID: 32733596
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Toward automatic prediction of EGFR mutation status in pulmonary adenocarcinoma with 3D deep learning.
    Zhao W; Yang J; Ni B; Bi D; Sun Y; Xu M; Zhu X; Li C; Jin L; Gao P; Wang P; Hua Y; Li M
    Cancer Med; 2019 Jul; 8(7):3532-3543. PubMed ID: 31074592
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unsupervised and self-supervised deep learning approaches for biomedical text mining.
    Nadif M; Role F
    Brief Bioinform; 2021 Mar; 22(2):1592-1603. PubMed ID: 33569575
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Accelerating the discovery of antifungal peptides using deep temporal convolutional networks.
    Singh V; Shrivastava S; Kumar Singh S; Kumar A; Saxena S
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35152278
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Low-Shot Deep Learning of Diabetic Retinopathy With Potential Applications to Address Artificial Intelligence Bias in Retinal Diagnostics and Rare Ophthalmic Diseases.
    Burlina P; Paul W; Mathew P; Joshi N; Pacheco KD; Bressler NM
    JAMA Ophthalmol; 2020 Oct; 138(10):1070-1077. PubMed ID: 32880609
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Learning image features with fewer labels using a semi-supervised deep convolutional network.
    Dos Santos FP; Zor C; Kittler J; Ponti MA
    Neural Netw; 2020 Dec; 132():131-143. PubMed ID: 32871338
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimising the use of gene expression data to predict plant metabolic pathway memberships.
    Wang P; Moore BM; Uygun S; Lehti-Shiu MD; Barry CS; Shiu SH
    New Phytol; 2021 Jul; 231(1):475-489. PubMed ID: 33749860
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comprehensive evaluation of two genome-scale metabolic network models for Scheffersomyces stipitis.
    Damiani AL; He QP; Jeffries TW; Wang J
    Biotechnol Bioeng; 2015 Jun; 112(6):1250-62. PubMed ID: 25580821
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource.
    Seaver SM; Gerdes S; Frelin O; Lerma-Ortiz C; Bradbury LM; Zallot R; Hasnain G; Niehaus TD; El Yacoubi B; Pasternak S; Olson R; Pusch G; Overbeek R; Stevens R; de Crécy-Lagard V; Ware D; Hanson AD; Henry CS
    Proc Natl Acad Sci U S A; 2014 Jul; 111(26):9645-50. PubMed ID: 24927599
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Predicting Hot Spots Using a Deep Neural Network Approach.
    Preto AJ; Matos-Filipe P; de Almeida JG; Mourão J; Moreira IS
    Methods Mol Biol; 2021; 2190():267-288. PubMed ID: 32804371
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pantograph: A template-based method for genome-scale metabolic model reconstruction.
    Loira N; Zhukova A; Sherman DJ
    J Bioinform Comput Biol; 2015 Apr; 13(2):1550006. PubMed ID: 25572717
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multi-scale Attention Convolutional Neural Network for time series classification.
    Chen W; Shi K
    Neural Netw; 2021 Apr; 136():126-140. PubMed ID: 33485098
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Supervised de novo reconstruction of metabolic pathways from metabolome-scale compound sets.
    Kotera M; Tabei Y; Yamanishi Y; Tokimatsu T; Goto S
    Bioinformatics; 2013 Jul; 29(13):i135-44. PubMed ID: 23812977
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolic pathway inference using multi-label classification with rich pathway features.
    M A Basher AR; McLaughlin RJ; Hallam SJ
    PLoS Comput Biol; 2020 Oct; 16(10):e1008174. PubMed ID: 33001968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.