BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35760167)

  • 1. Increased rice yield and reduced greenhouse gas emissions through alternate wetting and drying in a triple-cropped rice field in the Mekong Delta.
    Arai H
    Sci Total Environ; 2022 Oct; 842():156958. PubMed ID: 35760167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigating greenhouse gas emissions from irrigated rice cultivation through improved fertilizer and water management.
    Islam SMM; Gaihre YK; Islam MR; Ahmed MN; Akter M; Singh U; Sander BO
    J Environ Manage; 2022 Apr; 307():114520. PubMed ID: 35066193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiyear methane and nitrous oxide emissions in different irrigation management under long-term continuous rice rotation in Arkansas.
    Karki S; Adviento-Borbe MAA; Runkle BRK; Moreno-García B; Anders M; Reba ML
    J Environ Qual; 2023; 52(3):558-572. PubMed ID: 36504408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zeolite application increases grain yield and mitigates greenhouse gas emissions under alternate wetting and drying rice system.
    Sha Y; Chi D; Chen T; Wang S; Zhao Q; Li Y; Sun Y; Chen J; Lærke PE
    Sci Total Environ; 2022 Sep; 838(Pt 4):156067. PubMed ID: 35605853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of rice varieties, organic manure and water management on greenhouse gas emissions from paddy rice soils.
    Win EP; Win KK; Bellingrath-Kimura SD; Oo AZ
    PLoS One; 2021; 16(6):e0253755. PubMed ID: 34191848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated effects of microbial decomposing inoculant on greenhouse gas emissions, grain yield and economic profit from paddy fields under different water regimes.
    Hao M; Guo LJ; Du XZ; Wang HL; Sheng F; Li CF
    Sci Total Environ; 2022 Jan; 805():150295. PubMed ID: 34536874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal Water Level Management for Mitigating GHG Emissions through Water-Conserving Irrigation in An Giang Province, Vietnam.
    Ogawa S; Yamamoto K; Uno K; Thuan NC; Togami T; Shindo S
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the GHG mitigation-potential of alternate wetting and drying in rice through life cycle assessment.
    Fertitta-Roberts C; Oikawa PY; Darrel Jenerette G
    Sci Total Environ; 2019 Feb; 653():1343-1353. PubMed ID: 30759574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rice plants reduce methane emissions in high-emitting paddies.
    Oda M; Chiem NH
    F1000Res; 2018; 7():1349. PubMed ID: 31372208
    [No Abstract]   [Full Text] [Related]  

  • 10. Methane emissions in triple rice cropping: patterns and a method for reduction.
    Oda M; Nguyen HC
    F1000Res; 2019; 8():1675. PubMed ID: 32185020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A combination of organic fertilizers partially substitution with alternate wet and dry irrigation could further reduce greenhouse gases emission in rice field.
    Liao B; Cai T; Wu X; Luo Y; Liao P; Zhang B; Zhang Y; Wei G; Hu R; Luo Y; Cui Y
    J Environ Manage; 2023 Oct; 344():118372. PubMed ID: 37343474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rice husk and husk biochar soil amendments store soil carbon while water management controls dissolved organic matter chemistry in well-weathered soil.
    Linam F; Limmer MA; Ebling AM; Seyfferth AL
    J Environ Manage; 2023 Aug; 339():117936. PubMed ID: 37068400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eddy covariance assessment of alternate wetting and drying floodwater management on rice methane emissions.
    Anapalli SS; Pinnamaneni SR; Reddy KN; Wagle P; Ashworth AJ
    Heliyon; 2023 Apr; 9(4):e14696. PubMed ID: 37025780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Field greenhouse gas emission characteristics and carbon footprint of ratoon rice].
    Lin ZM; Li Z; Weng PY; Wu DQ; Zou JN; Pang ZQ; Lin WX
    Ying Yong Sheng Tai Xue Bao; 2022 May; 33(5):1340-1351. PubMed ID: 35730093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended methane mitigation capacity of a mid-season drainage beyond the rice growing season: a case in Spain.
    Martínez-Eixarch M; Beltrán-Miralles M; Guéry S; Alcaraz C
    Environ Monit Assess; 2022 Aug; 194(9):648. PubMed ID: 35931859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can cropland management practices lower net greenhouse emissions without compromising yield?
    Shang Z; Abdalla M; Xia L; Zhou F; Sun W; Smith P
    Glob Chang Biol; 2021 Oct; 27(19):4657-4670. PubMed ID: 34241939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical evaluation of biochar utilization effect on mitigating global warming in whole rice cropping boundary.
    Canatoy RC; Cho SR; Ok YS; Jeong ST; Kim PJ
    Sci Total Environ; 2022 Jun; 827():154344. PubMed ID: 35257754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Integrated Rice-Frog Farming on Paddy Field Greenhouse Gas Emissions.
    Fang K; Yi X; Dai W; Gao H; Cao L
    Int J Environ Res Public Health; 2019 May; 16(11):. PubMed ID: 31159212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paddy-upland rotation with Chinese milk vetch incorporation reduced the global warming potential and greenhouse gas emissions intensity of double rice cropping system.
    Zhong C; Liu Y; Xu X; Yang B; Aamer M; Zhang P; Huang G
    Environ Pollut; 2021 May; 276():116696. PubMed ID: 33744496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced rice production but greatly reduced carbon emission following biochar amendment in a metal-polluted rice paddy.
    Zhang A; Bian R; Li L; Wang X; Zhao Y; Hussain Q; Pan G
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18977-86. PubMed ID: 26213131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.