These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35760394)

  • 1. Kirigami Engineering of Suspended Graphene Transducers.
    Dai C; Rho Y; Pham K; McCormick B; Blankenship BW; Zhao W; Zhang Z; Gilbert SM; Crommie MF; Wang F; Grigoropoulos CP; Zettl A
    Nano Lett; 2022 Jul; 22(13):5301-5306. PubMed ID: 35760394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulating the mass sensitivity of graphene resonators via kirigami.
    Zhu P; Zhang H; Zhang X; Cao W; Wang Q
    Nanotechnology; 2022 Sep; 33(48):. PubMed ID: 36007461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and Simulation of Graphene-Based Transducers in NEMS Accelerometers.
    He C; Ding J; Fan X
    Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators.
    Singh V; Sengupta S; Solanki HS; Dhall R; Allain A; Dhara S; Pant P; Deshmukh MM
    Nanotechnology; 2010 Apr; 21(16):165204. PubMed ID: 20351404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Resonant Graphene NEMS Vibrometer.
    Moreno-Garcia D; Fan X; Smith AD; Lemme MC; Messina V; Martin-Olmos C; Niklaus F; Villanueva LG
    Small; 2022 Jul; 18(28):e2201816. PubMed ID: 35638191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arbitrary shaped, liquid filled reverberators with non-resonant transducers for broadband focusing of ultrasound using Time Reversed Acoustics.
    Sarvazyan A; Fillinger L
    Ultrasonics; 2009 Mar; 49(3):301-5. PubMed ID: 19062060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulsed Laser-Assisted Helium Ion Nanomachining of Monolayer Graphene-Direct-Write Kirigami Patterns.
    Zhang C; Dyck O; Garfinkel DA; Stanford MG; Belianinov AA; Fowlkes JD; Jesse S; Rack PD
    Nanomaterials (Basel); 2019 Sep; 9(10):. PubMed ID: 31574915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromechanical piezoresistive sensing in suspended graphene membranes.
    Smith AD; Niklaus F; Paussa A; Vaziri S; Fischer AC; Sterner M; Forsberg F; Delin A; Esseni D; Palestri P; Östling M; Lemme MC
    Nano Lett; 2013 Jul; 13(7):3237-42. PubMed ID: 23786215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance tracking and vibration stablilization for high power ultrasonic transducers.
    Kuang Y; Jin Y; Cochran S; Huang Z
    Ultrasonics; 2014 Jan; 54(1):187-94. PubMed ID: 23928264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultralarge suspended and perforated graphene membranes for cell culture applications.
    Dorey F; Furer LA; Zehnder S; Furrer R; Brönnimann R; Shorubalko I; Buerki-Thurnherr T
    J Mater Chem B; 2023 Nov; 11(42):10097-10107. PubMed ID: 37842821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental investigation on characteristics of graphene acoustic transducers driven by electrostatic and electromagnetic forces.
    Guo X; Zhang Y; An J; Zhang Q; Wang R; Yu X
    Ultrasonics; 2023 Jan; 127():106857. PubMed ID: 36183495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-on-paper sound source devices.
    Tian H; Ren TL; Xie D; Wang YF; Zhou CJ; Feng TT; Fu D; Yang Y; Peng PG; Wang LG; Liu LT
    ACS Nano; 2011 Jun; 5(6):4878-85. PubMed ID: 21591811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward virtual biopsy through an all fiber optic ultrasonic miniaturized transducer: a proposal.
    Acquafresca A; Biagi E; Masotti L; Menichelli D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Oct; 50(10):1325-35. PubMed ID: 14609072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene Surface Acoustic Wave Sensor for Simultaneous Detection of Charge and Mass.
    Okuda S; Ono T; Kanai Y; Ikuta T; Shimatani M; Ogawa S; Maehashi K; Inoue K; Matsumoto K
    ACS Sens; 2018 Jan; 3(1):200-204. PubMed ID: 29283246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining the Responsivity of Air-Coupled Piezoelectric Transducers Using a Comparative Method: Theory and Experiments.
    Li X; Dai Z; Zhang G; Zhang S; Jeong H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Oct; 68(10):3114-3125. PubMed ID: 34224350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibration amplitude and induced temperature limitation of high power air-borne ultrasonic transducers.
    Saffar S; Abdullah A
    Ultrasonics; 2014 Jan; 54(1):168-76. PubMed ID: 23664304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental analysis of 1-3 piezocomposites for high-intensity focused ultrasound transducer applications.
    Chen GS; Liu HC; Lin YC; Lin YL
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):128-34. PubMed ID: 23193224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the sandwich piezoelectric ultrasonic transducer in coupled vibration.
    Shuyu L
    J Acoust Soc Am; 2005 Feb; 117(2):653-61. PubMed ID: 15759686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene kirigami.
    Blees MK; Barnard AW; Rose PA; Roberts SP; McGill KL; Huang PY; Ruyack AR; Kevek JW; Kobrin B; Muller DA; McEuen PL
    Nature; 2015 Aug; 524(7564):204-7. PubMed ID: 26222025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging mechanical vibrations in suspended graphene sheets.
    Garcia-Sanchez D; van der Zande AM; Paulo AS; Lassagne B; McEuen PL; Bachtold A
    Nano Lett; 2008 May; 8(5):1399-403. PubMed ID: 18402478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.