These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35760793)

  • 1. Sustainable wood electronics by iron-catalyzed laser-induced graphitization for large-scale applications.
    Dreimol CH; Guo H; Ritter M; Keplinger T; Ding Y; Günther R; Poloni E; Burgert I; Panzarasa G
    Nat Commun; 2022 Jun; 13(1):3680. PubMed ID: 35760793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron-Catalyzed Laser-Induced Graphitization - Multiscale Analysis of the Structural Evolution and Underlying Mechanism.
    Dreimol CH; Kürsteiner R; Ritter M; Parrilli A; Edberg J; Garemark J; Stucki S; Yan W; Tinello S; Panzarasa G; Burgert I
    Small; 2024 Dec; 20(49):e2405558. PubMed ID: 39279332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Microstructured Capacitive Pressure Sensors Using Laser Engraving and Graphitization from Natural Wood.
    Qu C; Lu M; Zhang Z; Chen S; Liu D; Zhang D; Wang J; Sheng B
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water Peel-Off Transfer of Electronically Enhanced, Paper-Based Laser-Induced Graphene for Wearable Electronics.
    Pinheiro T; Correia R; Morais M; Coelho J; Fortunato E; Sales MGF; Marques AC; Martins R
    ACS Nano; 2022 Dec; 16(12):20633-20646. PubMed ID: 36383513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wood-Based Flexible Electronics.
    Fu Q; Chen Y; Sorieul M
    ACS Nano; 2020 Mar; 14(3):3528-3538. PubMed ID: 32109046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-Graphene Sensors for Monitoring Moisture Levels in Wood and Ambient Environment.
    Mulla MY; Isacsson P; Dobryden I; Beni V; Östmark E; Håkansson K; Edberg J
    Glob Chall; 2023 Apr; 7(4):2200235. PubMed ID: 37020627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wood as a green and sustainable alternative for environmentally friendly & flexible electronic devices.
    Malik H; Niazi MBK; Miran W; Tawfeek AM; Jahan Z; Kamel EM; Ahmed N; Saeed Akhtar M
    Chemosphere; 2023 Sep; 336():139213. PubMed ID: 37331660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wooden Tongue Depressor Multiplex Saliva Biosensor Fabricated via Diode Laser Engraving.
    Koukouviti E; Soulis D; Economou A; Kokkinos C
    Anal Chem; 2023 May; 95(17):6765-6768. PubMed ID: 37079776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Laser Writing of Chitosan-Borax Composites: Toward Sustainable Electrochemical Sensors.
    Vaughan E; Santillo C; Imbrogno A; Gentile G; Quinn AJ; Kaciulis S; Lavorgna M; Iacopino D
    ACS Sustain Chem Eng; 2023 Sep; 11(37):13574-13583. PubMed ID: 37767083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser-Induced Graphene from Paper for Mechanical Sensing.
    Kulyk B; Silva BFR; Carvalho AF; Silvestre S; Fernandes AJS; Martins R; Fortunato E; Costa FM
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10210-10221. PubMed ID: 33619955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics.
    Yeo J; Hong S; Lee D; Hotz N; Lee MT; Grigoropoulos CP; Ko SH
    PLoS One; 2012; 7(8):e42315. PubMed ID: 22900011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.
    Zhu H; Luo W; Ciesielski PN; Fang Z; Zhu JY; Henriksson G; Himmel ME; Hu L
    Chem Rev; 2016 Aug; 116(16):9305-74. PubMed ID: 27459699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calligraphic interdigitated capacitive sensors for green electronics.
    Thakur AS; Srivatava V; Park HKB; Kebaili I; Boukhris I; Joo YH; Sung TH; Kumar A; Vaish R
    Sci Rep; 2024 Jul; 14(1):15685. PubMed ID: 38977727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food.
    Chyan Y; Ye R; Li Y; Singh SP; Arnusch CJ; Tour JM
    ACS Nano; 2018 Mar; 12(3):2176-2183. PubMed ID: 29436816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfur-Doped Laser-Induced Porous Graphene Derived from Polysulfone-Class Polymers and Membranes.
    Singh SP; Li Y; Zhang J; Tour JM; Arnusch CJ
    ACS Nano; 2018 Jan; 12(1):289-297. PubMed ID: 29241007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidating the Mechanism of Iron-Catalyzed Graphitization: The First Observation of Homogeneous Solid-State Catalysis.
    Hunter RD; Takeguchi M; Hashimoto A; Ridings KM; Hendy SC; Zakharov D; Warnken N; Isaacs J; Fernandez-Muñoz S; Ramirez-Rico J; Schnepp Z
    Adv Mater; 2024 Sep; 36(36):e2404170. PubMed ID: 39011966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous laser-based graphitization and microstructuring of bamboo for supercapacitors derived from renewable resources.
    Miyakoshi R; Hayashi S; Terakawa M
    RSC Adv; 2022 Oct; 12(46):29647-29652. PubMed ID: 36321074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Stretchable, Transparent, and Conductive Wood Fabricated by in Situ Photopolymerization with Polymerizable Deep Eutectic Solvents.
    Wang M; Li R; Chen G; Zhou S; Feng X; Chen Y; He M; Liu D; Song T; Qi H
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14313-14321. PubMed ID: 30915834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Processing Natural Wood into a High-Performance Flexible Pressure Sensor.
    Guan H; Meng J; Cheng Z; Wang X
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46357-46365. PubMed ID: 32967417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser-Guided, Self-Confined Graphitization for High-Conductivity Embedded Electronics.
    Yu H; Bian J; Chen F; Li K; Huang Y
    Research (Wash D C); 2024; 7():0305. PubMed ID: 38628354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.