These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35760912)

  • 1. The diversity of elaborate petals in Isopyreae (Ranunculaceae): a special focus on nectary structure.
    Zhu QQ; Xue C; Sun L; Zhong X; Zhu XX; Ren Y; Zhang XH
    Protoplasma; 2023 Mar; 260(2):437-451. PubMed ID: 35760912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Floral nectaries and pseudonectaries in Eranthis (Ranunculaceae): petal development, micromorphology, structure and ultrastructure.
    Huang Z; Zhang X
    Protoplasma; 2022 Sep; 259(5):1283-1300. PubMed ID: 35066725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptomics of early petal development across four diverse species of Aquilegia reveal few genes consistently associated with nectar spur development.
    Ballerini ES; Kramer EM; Hodges SA
    BMC Genomics; 2019 Aug; 20(1):668. PubMed ID: 31438840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity of petals in Berberidaceae: development, micromorphology, and structure of floral nectaries.
    Su S; Zhao L; Ren Y; Zhang XH
    Protoplasma; 2021 Jul; 258(4):905-922. PubMed ID: 33496857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative floral spur anatomy and nectar secretion in four representatives of Ranunculaceae.
    Antoń S; Kamińska M
    Protoplasma; 2015 Nov; 252(6):1587-601. PubMed ID: 25772682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and anatomy of petals with specialized nectar holder and pollen container in Fumarioideae (Papaveraceae).
    Lv X; Wang Y; Wang X; Zhang M; Zhang Y; Zhao L; Zhang X
    Planta; 2024 Jun; 260(1):21. PubMed ID: 38847829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detaling morphological traits of Trollius europeus L. flowers, nectary structure, and holocrine nectar secretion through combined light and electron microscopy.
    Sulborska-Różycka A; Weryszko-Chmielewska E
    Micron; 2022 Nov; 162():103345. PubMed ID: 36113361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pennycress (Thlaspi arvense L.) nectary: structural and transcriptomic characterization.
    Thomas JB; Hampton ME; Dorn KM; David Marks M; Carter CJ
    BMC Plant Biol; 2017 Nov; 17(1):201. PubMed ID: 29137608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolution of floral nectaries in Disa (Orchidaceae: Disinae): recapitulation or diversifying innovation?
    Hobbhahn N; Johnson SD; Bytebier B; Yeung EC; Harder LD
    Ann Bot; 2013 Nov; 112(7):1303-19. PubMed ID: 23997231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homologs of the STYLISH gene family control nectary development in Aquilegia.
    Min Y; Bunn JI; Kramer EM
    New Phytol; 2019 Jan; 221(2):1090-1100. PubMed ID: 30145791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is nectar reabsorption restricted by the stalk cells of floral and extrafloral nectary trichomes?
    Cardoso-Gustavson P; Davis AR
    Plant Biol (Stuttg); 2015 Jan; 17(1):134-46. PubMed ID: 24987788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic and microstructural analyses in Liriodendron tulipifera Linn. reveal candidate genes involved in nectary development and nectar secretion.
    Liu H; Ma J; Li H
    BMC Plant Biol; 2019 Dec; 19(1):531. PubMed ID: 31791230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A flat petal as ancestral state for Ranunculaceae.
    Delpeuch P; Jabbour F; Damerval C; Schönenberger J; Pamperl S; Rome M; Nadot S
    Front Plant Sci; 2022; 13():961906. PubMed ID: 36212342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Floral nectar production and carbohydrate composition and the structure of receptacular nectaries in the invasive plant Bunias orientalis L. (Brassicaceae).
    Denisow B; Masierowska M; Antoń S
    Protoplasma; 2016 Nov; 253(6):1489-1501. PubMed ID: 26560112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Floral nectary, nectar production dynamics and chemical composition in five nocturnal Oenothera species (Onagraceae) in relation to floral visitors.
    Antoń S; Komoń-Janczara E; Denisow B
    Planta; 2017 Dec; 246(6):1051-1067. PubMed ID: 28779217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Annular floral nectary with oil-producing trichomes in Salvia farinacea (Lamiaceae): Anatomy, histochemistry, ultrastructure, and significance.
    Zhang X; Sawhney VK; Davis AR
    Am J Bot; 2014 Nov; 101(11):1849-67. PubMed ID: 25366851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and structure of four different stamens in Clematis macropetala (Ranunculaceae): particular emphasis on staminodes and staminal nectary.
    Li WJ; Huang ZX; Han M; Ren Y; Zhang XH
    Protoplasma; 2022 May; 259(3):627-640. PubMed ID: 34247271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative survey of secretory structures and floral anatomy of Cohniella cepula and Cohniella jonesiana (Orchidaceae: Oncidiinae). New evidences of nectaries and osmophores in the genus.
    Kettler BA; Solís SM; Ferrucci MS
    Protoplasma; 2019 May; 256(3):703-720. PubMed ID: 30470901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological, anatomical, ultrastructural, and histochemical study of flowers and nectaries of Iris sibirica L.
    Konarska A
    Micron; 2022 Jul; 158():103288. PubMed ID: 35468500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative micromorphology and anatomy of flowers and floral secretory structures in two Viburnum species.
    Konarska A
    Protoplasma; 2017 Jan; 254(1):523-537. PubMed ID: 27076216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.