BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 35761001)

  • 1. Microfluidics for the Isolation and Detection of Circulating Tumor Cells.
    Sierra-Agudelo J; Rodriguez-Trujillo R; Samitier J
    Adv Exp Med Biol; 2022; 1379():389-412. PubMed ID: 35761001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Recent advances in isolation and detection of circulating tumor cells with a microfluidic system].
    Cao R; Zhang M; Yu H; Qin J
    Se Pu; 2022 Mar; 40(3):213-223. PubMed ID: 35243831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lateral Filter Array Microfluidic Devices for Detecting Circulating Tumor Cells.
    Chen K; George TJ; Fan ZH
    Methods Mol Biol; 2023; 2679():1-13. PubMed ID: 37300605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical Microfluidic Chip Platform for the Isolation of Versatile Circulating Tumor Cells.
    Chen H; Han Y; Li Q; Zou Y; Wang S; Jiao X
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37902316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wedge-shaped microfluidic chip for circulating tumor cells isolation and its clinical significance in gastric cancer.
    Yang C; Zhang N; Wang S; Shi D; Zhang C; Liu K; Xiong B
    J Transl Med; 2018 May; 16(1):139. PubMed ID: 29792200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic Devices for Circulating Tumor Cells Isolation and Subsequent Analysis.
    Khamenehfar A; Li PC
    Curr Pharm Biotechnol; 2016; 17(9):810-21. PubMed ID: 26927214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Affinity-Based Microfluidics Combined with Atomic Force Microscopy for Isolation and Nanomechanical Characterization of Circulating Tumor Cells.
    Deliorman M; Glia A; Qasaimeh MA
    Methods Mol Biol; 2023; 2679():41-66. PubMed ID: 37300608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A micropillar array-based microfluidic chip for label-free separation of circulating tumor cells: The best micropillar geometry?
    Rahmanian M; Sartipzadeh Hematabad O; Askari E; Shokati F; Bakhshi A; Moghadam S; Olfatbakhsh A; Al Sadat Hashemi E; Khorsand Ahmadi M; Morteza Naghib S; Sinha N; Tel J; Eslami Amirabadi H; den Toonder JMJ; Majidzadeh-A K
    J Adv Res; 2023 May; 47():105-121. PubMed ID: 35964874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel microfluidic device integrating focus-separation speed reduction design and trap arrays for high-throughput capture of circulating tumor cells.
    Lu C; Xu J; Han J; Li X; Xue N; Li J; Wu W; Sun X; Wang Y; Ouyang Q; Yang G; Luo C
    Lab Chip; 2020 Nov; 20(22):4094-4105. PubMed ID: 33089845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient separation of tumor cells from untreated whole blood using a novel multistage hydrodynamic focusing microfluidics.
    Gao R; Cheng L; Wang S; Bi X; Wang X; Wang R; Chen X; Zha Z; Wang F; Xu X; Zhao G; Yu L
    Talanta; 2020 Jan; 207():120261. PubMed ID: 31594567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Discovery of Novel Circulating Cancer-Related Cells in Circulation Poses New Challenges to Microfluidic Devices for Enrichment and Detection.
    Wu M; Huang Y; Zhou Y; Zhao H; Lan Y; Yu Z; Jia C; Cong H; Zhao J
    Small Methods; 2022 Jul; 6(7):e2200226. PubMed ID: 35595707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells.
    Lin M; Chen JF; Lu YT; Zhang Y; Song J; Hou S; Ke Z; Tseng HR
    Acc Chem Res; 2014 Oct; 47(10):2941-50. PubMed ID: 25111636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic-Based Technologies for CTC Isolation: A Review of 10 Years of Intense Efforts towards Liquid Biopsy.
    Descamps L; Le Roy D; Deman AL
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in Microfluidic Platform for Physical and Immunological Detection and Capture of Circulating Tumor Cells.
    Bhat MP; Thendral V; Uthappa UT; Lee KH; Kigga M; Altalhi T; Kurkuri MD; Kant K
    Biosensors (Basel); 2022 Apr; 12(4):. PubMed ID: 35448280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging Microfluidic Technologies for the Detection of Circulating Tumor Cells and Fetal Nucleated Red Blood Cells.
    Wei X; Chen K; Guo S; Liu W; Zhao XZ
    ACS Appl Bio Mater; 2021 Feb; 4(2):1140-1155. PubMed ID: 35014471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Affinity Versus Label-Free Isolation of Circulating Tumor Cells: Who Wins?
    Murlidhar V; Rivera-Báez L; Nagrath S
    Small; 2016 Sep; 12(33):4450-63. PubMed ID: 27436104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circulating tumor cells: clinically relevant molecular access based on a novel CTC flow cell.
    Winer-Jones JP; Vahidi B; Arquilevich N; Fang C; Ferguson S; Harkins D; Hill C; Klem E; Pagano PC; Peasley C; Romero J; Shartle R; Vasko RC; Strauss WM; Dempsey PW
    PLoS One; 2014; 9(1):e86717. PubMed ID: 24489774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Developments in Inertial and Centrifugal Microfluidic Systems along with the Involved Forces for Cancer Cell Separation: A Review.
    Farahinia A; Zhang W; Badea I
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel size-based design of spiral microfluidic devices with elliptic configurations and trapezoidal cross-section for ultra-fast isolation of circulating tumor cells.
    Akbarnataj K; Maleki S; Rezaeian M; Haki M; Shamloo A
    Talanta; 2023 Mar; 254():124125. PubMed ID: 36462283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force.
    Huang SB; Wu MH; Lin YH; Hsieh CH; Yang CL; Lin HC; Tseng CP; Lee GB
    Lab Chip; 2013 Apr; 13(7):1371-83. PubMed ID: 23389102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.