These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35761052)

  • 1. A Selenium-based Cysteine Surrogate for Protein Chemical Synthesis.
    Firstova O; Agouridas V; Diemer V; Melnyk O
    Methods Mol Biol; 2022; 2530():213-239. PubMed ID: 35761052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cysteine selenosulfide redox switch for protein chemical synthesis.
    Diemer V; Ollivier N; Leclercq B; Drobecq H; Vicogne J; Agouridas V; Melnyk O
    Nat Commun; 2020 May; 11(1):2558. PubMed ID: 32444769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of cysteine-rich peptides by native chemical ligation without use of exogenous thiols.
    Tsuda S; Yoshiya T; Mochizuki M; Nishiuchi Y
    Org Lett; 2015 Apr; 17(7):1806-9. PubMed ID: 25789929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Chemical Protein Synthesis using Fmoc-Masked N-Terminal Cysteine in Peptide Thioester Segments.
    Kar A; Mannuthodikayil J; Singh S; Biswas A; Dubey P; Das A; Mandal K
    Angew Chem Int Ed Engl; 2020 Aug; 59(35):14796-14801. PubMed ID: 32333711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-pot chemical synthesis of small ubiquitin-like modifier protein-peptide conjugates using bis(2-sulfanylethyl)amido peptide latent thioester surrogates.
    Boll E; Drobecq H; Ollivier N; Blanpain A; Raibaut L; Desmet R; Vicogne J; Melnyk O
    Nat Protoc; 2015 Feb; 10(2):269-92. PubMed ID: 25591010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Traceless chemical ligation from S-, O-, and N-acyl isopeptides.
    Panda SS; Hall CD; Oliferenko AA; Katritzky AR
    Acc Chem Res; 2014 Apr; 47(4):1076-87. PubMed ID: 24617996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Native Chemical Ligation via N-Acylurea Thioester Surrogates Obtained by Fmoc Solid-Phase Peptide Synthesis.
    Palà-Pujadas J; Blanco-Canosa JB
    Methods Mol Biol; 2020; 2133():141-161. PubMed ID: 32144666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide and Protein Desulfurization with Diboron Reagents.
    Jing R; Walczak MA
    Org Lett; 2024 Apr; 26(13):2590-2595. PubMed ID: 38517348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox-Controlled Chemical Protein Synthesis: Sundry Shades of Latency.
    Agouridas V; Ollivier N; Vicogne J; Diemer V; Melnyk O
    Acc Chem Res; 2022 Sep; 55(18):2685-2697. PubMed ID: 36083810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-pot/sequential native chemical ligation using N-sulfanylethylanilide peptide.
    Otaka A; Sato K; Ding H; Shigenaga A
    Chem Rec; 2012 Oct; 12(5):479-90. PubMed ID: 22927228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tidbits for the synthesis of bis(2-sulfanylethyl)amido (SEA) polystyrene resin, SEA peptides and peptide thioesters.
    Ollivier N; Raibaut L; Blanpain A; Desmet R; Dheur J; Mhidia R; Boll E; Drobecq H; Pira SL; Melnyk O
    J Pept Sci; 2014 Feb; 20(2):92-7. PubMed ID: 24254655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bis(2-sulfanylethyl)amido peptides enable native chemical ligation at proline and minimize deletion side-product formation.
    Raibaut L; Seeberger P; Melnyk O
    Org Lett; 2013 Nov; 15(21):5516-9. PubMed ID: 24117240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical Protein Synthesis with the α-Ketoacid-Hydroxylamine Ligation.
    Bode JW
    Acc Chem Res; 2017 Sep; 50(9):2104-2115. PubMed ID: 28849903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling Peptide Self-Assembly through a Native Chemical Ligation/Desulfurization Strategy.
    Rasale DB; Konda M; Biswas S; Das AK
    Chem Asian J; 2016 Mar; 11(6):926-35. PubMed ID: 26808117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in Native Chemical Ligation-Desulfurization: A Powerful Strategy for Peptide and Protein Synthesis.
    Jin K; Li X
    Chemistry; 2018 Nov; 24(66):17397-17404. PubMed ID: 29947435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemoselectivity in chemical biology: acyl transfer reactions with sulfur and selenium.
    McGrath NA; Raines RT
    Acc Chem Res; 2011 Sep; 44(9):752-61. PubMed ID: 21639109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. P-B Desulfurization: An Enabling Method for Protein Chemical Synthesis and Site-Specific Deuteration.
    Jin K; Li T; Chow HY; Liu H; Li X
    Angew Chem Int Ed Engl; 2017 Nov; 56(46):14607-14611. PubMed ID: 28971554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Fmoc-based solid-phase synthesis of peptide thioesters with self-purification effect and application in the construction of immobilized SH3 domains.
    Mende F; Beisswenger M; Seitz O
    J Am Chem Soc; 2010 Aug; 132(32):11110-8. PubMed ID: 20662535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient substitution reaction from cysteine to the serine residue of glycosylated polypeptide: repetitive peptide segment ligation strategy and the synthesis of glycosylated tetracontapeptide having acid labile sialyl-T(N) antigens.
    Okamoto R; Souma S; Kajihara Y
    J Org Chem; 2009 Mar; 74(6):2494-501. PubMed ID: 19236026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical synthesis of proteins using N-sulfanylethylanilide peptides, based on N-S acyl transfer chemistry.
    Otaka A; Sato K; Shigenaga A
    Top Curr Chem; 2015; 363():33-56. PubMed ID: 25467538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.