These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 35761342)
1. Enhanced extracellular raw starch-degrading α-amylase production in Bacillus subtilis by promoter engineering and translation initiation efficiency optimization. Li H; Yao D; Pan Y; Chen X; Fang Z; Xiao Y Microb Cell Fact; 2022 Jun; 21(1):127. PubMed ID: 35761342 [TBL] [Abstract][Full Text] [Related]
2. Enhanced extracellular production of raw starch-degrading α-amylase in Bacillus subtilis through expression regulatory element modification and fermentation optimization. Yao D; Han X; Gao H; Wang B; Fang Z; Li H; Fang W; Xiao Y Microb Cell Fact; 2023 Jun; 22(1):118. PubMed ID: 37381017 [TBL] [Abstract][Full Text] [Related]
3. AmyZ1: a novel α-amylase from marine bacterium Fang W; Xue S; Deng P; Zhang X; Wang X; Xiao Y; Fang Z Biotechnol Biofuels; 2019; 12():95. PubMed ID: 31044008 [TBL] [Abstract][Full Text] [Related]
4. Enhanced extracellular expression of Bacillus stearothermophilus α-amylase in Bacillus subtilis through signal peptide optimization, chaperone overexpression and α-amylase mutant selection. Yao D; Su L; Li N; Wu J Microb Cell Fact; 2019 Apr; 18(1):69. PubMed ID: 30971250 [TBL] [Abstract][Full Text] [Related]
5. Enhanced Production of Soluble Zhang K; Tan R; Yao D; Su L; Xia Y; Wu J J Microbiol Biotechnol; 2021 Apr; 31(4):570-583. PubMed ID: 33753701 [No Abstract] [Full Text] [Related]
6. Overexpression of an endogenous raw starch digesting mesophilic α-amylase gene in Bacillus amyloliquefaciens Z3 by in vitro methylation protocol. Tang S; Xu T; Peng J; Zhou K; Zhu Y; Zhou W; Cheng H; Zhou H J Sci Food Agric; 2020 May; 100(7):3013-3023. PubMed ID: 32056215 [TBL] [Abstract][Full Text] [Related]
7. High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system. Zhang K; Su L; Duan X; Liu L; Wu J Microb Cell Fact; 2017 Feb; 16(1):32. PubMed ID: 28219382 [TBL] [Abstract][Full Text] [Related]
8. Construction of a highly active secretory expression system in Bacillus subtilis of a recombinant amidase by promoter and signal peptide engineering. Kang XM; Cai X; Huang ZH; Liu ZQ; Zheng YG Int J Biol Macromol; 2020 Jan; 143():833-841. PubMed ID: 31765756 [TBL] [Abstract][Full Text] [Related]
9. Heterologous expression, biochemical characterization, and overproduction of alkaline α-amylase from Bacillus alcalophilus in Bacillus subtilis. Yang H; Liu L; Li J; Du G; Chen J Microb Cell Fact; 2011 Oct; 10():77. PubMed ID: 21978209 [TBL] [Abstract][Full Text] [Related]
10. Efficient production of extracellular pullulanase in Bacillus subtilis ATCC6051 using the host strain construction and promoter optimization expression system. Liu X; Wang H; Wang B; Pan L Microb Cell Fact; 2018 Oct; 17(1):163. PubMed ID: 30348150 [TBL] [Abstract][Full Text] [Related]
11. Studies on the production of alkaline α-amylase from Bacillus subtilis CB-18. Nwokoro O; Anthonia O Acta Sci Pol Technol Aliment; 2015; 14(1):71-75. PubMed ID: 28068022 [TBL] [Abstract][Full Text] [Related]
12. Systematic Screening of Optimal Signal Peptides for Secretory Production of Heterologous Proteins in Bacillus subtilis. Fu G; Liu J; Li J; Zhu B; Zhang D J Agric Food Chem; 2018 Dec; 66(50):13141-13151. PubMed ID: 30463403 [TBL] [Abstract][Full Text] [Related]
13. Characterization and high-efficiency secreted expression in Bacillus subtilis of a thermo-alkaline β-mannanase from an alkaliphilic Bacillus clausii strain S10. Zhou C; Xue Y; Ma Y Microb Cell Fact; 2018 Aug; 17(1):124. PubMed ID: 30098601 [TBL] [Abstract][Full Text] [Related]
14. Use of a new catabolite repression resistant promoter isolated from Bacillus subtilis KCC103 for hyper-production of recombinant enzymes. Nagarajan DR; Krishnan C Protein Expr Purif; 2010 Mar; 70(1):122-8. PubMed ID: 19815075 [TBL] [Abstract][Full Text] [Related]
15. Enhanced extracellular production of α-amylase in Bacillus subtilis by optimization of regulatory elements and over-expression of PrsA lipoprotein. Chen J; Gai Y; Fu G; Zhou W; Zhang D; Wen J Biotechnol Lett; 2015 Apr; 37(4):899-906. PubMed ID: 25515799 [TBL] [Abstract][Full Text] [Related]
16. Isolation and Screening of High-Yielding α-Amylase Mutants of Bacillus subtilis by Heavy Ion Mutagenesis. Cui JN; Hu W; Liu YX; Li YL; Hu JH; Liu ZY; Chen JH Appl Biochem Biotechnol; 2023 Jan; 195(1):68-85. PubMed ID: 35969299 [TBL] [Abstract][Full Text] [Related]
17. Influence of media composition on the production of alkaline α-amylase from Bacillus subtilis CB-18. Ogbonnaya N; Odiase A Acta Sci Pol Technol Aliment; 2012; 11(3):231-8. PubMed ID: 22744943 [TBL] [Abstract][Full Text] [Related]
18. Systematic engineering of transport and transcription to boost alkaline α-amylase production in Bacillus subtilis. Yang H; Ma Y; Zhao Y; Shen W; Chen X Appl Microbiol Biotechnol; 2020 Apr; 104(7):2973-2985. PubMed ID: 32043188 [TBL] [Abstract][Full Text] [Related]
19. Engineering a repression-free catabolite-enhanced expression system for a thermophilic alpha-amylase from Bacillus licheniformis MSG. Nathan S; Nair M J Biotechnol; 2013 Dec; 168(4):394-402. PubMed ID: 24091300 [TBL] [Abstract][Full Text] [Related]
20. The Construction of an Environmentally Friendly Super-Secreting Strain of Ferrando J; Miñana-Galbis D; Picart P Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 39000067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]