These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 35761342)
21. Cis-Element Engineering Promotes the Expression of Niu J; Yan R; Shen J; Zhu X; Meng F; Lu Z; Lu F Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743032 [TBL] [Abstract][Full Text] [Related]
22. Evaluating and engineering Saccharomyces cerevisiae promoters for increased amylase expression and bioethanol production from raw starch. Myburgh MW; Rose SH; Viljoen-Bloom M FEMS Yeast Res; 2020 Sep; 20(6):. PubMed ID: 32785598 [TBL] [Abstract][Full Text] [Related]
23. Overcoming hydrolysis of raw corn starch under industrial conditions with Bacillus licheniformis ATCC 9945a α-amylase. Šokarda Slavić M; Pešić M; Vujčić Z; Božić N Appl Microbiol Biotechnol; 2016 Mar; 100(6):2709-19. PubMed ID: 26545758 [TBL] [Abstract][Full Text] [Related]
24. Significantly enhancing recombinant alkaline amylase production in Ma Y; Shen W; Chen X; Liu L; Zhou Z; Xu F; Yang H J Biol Eng; 2016; 10():13. PubMed ID: 27777616 [TBL] [Abstract][Full Text] [Related]
25. Direct production of L-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis alpha-amylase using cspB promoter and signal sequence. Tateno T; Fukuda H; Kondo A Appl Microbiol Biotechnol; 2007 Dec; 77(3):533-41. PubMed ID: 17891388 [TBL] [Abstract][Full Text] [Related]
26. OPTIMIZATION OF ALKALINE Α-AMYLASE PRODUCTION BY THERMOPHILIC Al-Johani NB; Al-Seeni MN; Ahmed YM Afr J Tradit Complement Altern Med; 2017; 14(1):288-301. PubMed ID: 28480407 [TBL] [Abstract][Full Text] [Related]
27. Starch fermentation by recombinant saccharomyces cerevisiae strains expressing the alpha-amylase and glucoamylase genes from lipomyces kononenkoae and saccharomycopsis fibuligera. Eksteen JM; Van Rensburg P; Cordero Otero RR; Pretorius IS Biotechnol Bioeng; 2003 Dec; 84(6):639-46. PubMed ID: 14595776 [TBL] [Abstract][Full Text] [Related]
28. Halotolerant, acid-alkali stable, chelator resistant and raw starch digesting α-amylase from a marine bacterium Bacillus subtilis S8-18. Kalpana BJ; Pandian SK J Basic Microbiol; 2014 Aug; 54(8):802-11. PubMed ID: 23712833 [TBL] [Abstract][Full Text] [Related]
29. A genetic toolkit for efficient production of secretory protein in Bacillus subtilis. Li Y; Wu Y; Liu Y; Li J; Du G; Lv X; Liu L Bioresour Technol; 2022 Nov; 363():127885. PubMed ID: 36064082 [TBL] [Abstract][Full Text] [Related]
30. Raw starch-degrading α-amylase from Bacillus aquimaris MKSC 6.2: isolation and expression of the gene, bioinformatics and biochemical characterization of the recombinant enzyme. Puspasari F; Radjasa OK; Noer AS; Nurachman Z; Syah YM; van der Maarel M; Dijkhuizen L; Janeček S; Natalia D J Appl Microbiol; 2013 Jan; 114(1):108-20. PubMed ID: 23020612 [TBL] [Abstract][Full Text] [Related]
31. Enhanced extracellular α-amylase production in Brevibacillus choshinensis by optimizing extracellular degradation and folding environment. Yao D; Zhang K; Zhu X; Su L; Wu J J Ind Microbiol Biotechnol; 2022 Jan; 49(1):. PubMed ID: 34601573 [TBL] [Abstract][Full Text] [Related]
32. Enhancement of extracellular expression of Bacillus naganoensis pullulanase from recombinant Bacillus subtilis: Effects of promoter and host. Song W; Nie Y; Mu XQ; Xu Y Protein Expr Purif; 2016 Aug; 124():23-31. PubMed ID: 27109467 [TBL] [Abstract][Full Text] [Related]
33. High-level extracellular production of alkaline polygalacturonate lyase in Bacillus subtilis with optimized regulatory elements. Zhang J; Kang Z; Ling Z; Cao W; Liu L; Wang M; Du G; Chen J Bioresour Technol; 2013 Oct; 146():543-548. PubMed ID: 23973973 [TBL] [Abstract][Full Text] [Related]
34. Development of yeast strains for the efficient utilisation of starch: evaluation of constructs that express alpha-amylase and glucoamylase separately or as bifunctional fusion proteins. de Moraes LM; Astolfi-Filho S; Oliver SG Appl Microbiol Biotechnol; 1995 Nov; 43(6):1067-76. PubMed ID: 8590658 [TBL] [Abstract][Full Text] [Related]
35. Two tandemly located promoters, artificially constructed, are active in a Bacillus subtilis alpha-amylase secretion vector. Furusato T; Takano J; Jigami Y; Tanaka H; Yamane K J Biochem; 1986 Apr; 99(4):1181-90. PubMed ID: 3086305 [TBL] [Abstract][Full Text] [Related]
36. The optimized production, purification, characterization, and application in the bread making industry of three acid-stable alpha-amylases isoforms from a new isolated Bacillus subtilis strain US586. Trabelsi S; Ben Mabrouk S; Kriaa M; Ameri R; Sahnoun M; Mezghani M; Bejar S J Food Biochem; 2019 May; 43(5):e12826. PubMed ID: 31353531 [TBL] [Abstract][Full Text] [Related]
37. [Dual promoters enhance heterologous enzyme production from bacterial phage based recombinant Bacillus subtilis]. Liu G; Zhang Y; Xing M Sheng Wu Gong Cheng Xue Bao; 2006 Mar; 22(2):191-7. PubMed ID: 16607942 [TBL] [Abstract][Full Text] [Related]
38. Efficient Production of an Alginate Lyase in Zhou L; Zhang R; Jiang B; Meng Q; Chen J; Liu X J Agric Food Chem; 2024 Sep; 72(35):19403-19412. PubMed ID: 39180506 [TBL] [Abstract][Full Text] [Related]
39. Combinatorial Sec pathway analysis for improved heterologous protein secretion in Bacillus subtilis: identification of bottlenecks by systematic gene overexpression. Chen J; Fu G; Gai Y; Zheng P; Zhang D; Wen J Microb Cell Fact; 2015 Jun; 14():92. PubMed ID: 26112883 [TBL] [Abstract][Full Text] [Related]
40. Introduction of raw starch-binding domains into Bacillus subtilis alpha-amylase by fusion with the starch-binding domain of Bacillus cyclomaltodextrin glucanotransferase. Ohdan K; Kuriki T; Takata H; Kaneko H; Okada S Appl Environ Microbiol; 2000 Jul; 66(7):3058-64. PubMed ID: 10877806 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]