These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 35761342)
41. Mutual regulation of novel transcription factors RsrD and RsrE positively modulates the production of raw-starch-degrading enzyme in Guo H; Mo L-X; Luo X-M; Zhao S; Feng J-X Appl Environ Microbiol; 2024 Aug; 90(8):e0039024. PubMed ID: 39023351 [TBL] [Abstract][Full Text] [Related]
42. Production, purification and applications of raw starch degrading and calcium-independent α-amylase from soil rich in extremophile. Kohli I; Joshi NC; Varma A Int J Biol Macromol; 2020 Nov; 162():873-881. PubMed ID: 32565305 [TBL] [Abstract][Full Text] [Related]
43. Amylase enzyme from Bacillus subtilis S8-18: a potential desizing agent from the marine environment. Kalpana BJ; Sindhulakshmi M; Pandian SK Biotechnol Appl Biochem; 2014; 61(2):134-44. PubMed ID: 23659677 [TBL] [Abstract][Full Text] [Related]
44. Hybrid on-line optimal control strategy for producing α-amylase by Bacillus subtilis. Zhao W; Zheng J; Zhou HB Biosci Biotechnol Biochem; 2011; 75(4):694-9. PubMed ID: 21512239 [TBL] [Abstract][Full Text] [Related]
45. The -16 region, a vital sequence for the utilization of a promoter in Bacillus subtilis and Escherichia coli. Voskuil MI; Voepel K; Chambliss GH Mol Microbiol; 1995 Jul; 17(2):271-9. PubMed ID: 7494476 [TBL] [Abstract][Full Text] [Related]
46. Cloning, enhanced expression and characterization of an α-amylase gene from a wild strain in B. subtilis WB800. Chen J; Chen X; Dai J; Xie G; Yan L; Lu L; Chen J Int J Biol Macromol; 2015 Sep; 80():200-7. PubMed ID: 26092061 [TBL] [Abstract][Full Text] [Related]
47. High-efficiency expression and secretion of human FGF21 in Bacillus subtilis by intercalation of a mini-cistron cassette and combinatorial optimization of cell regulatory components. Li D; Fu G; Tu R; Jin Z; Zhang D Microb Cell Fact; 2019 Jan; 18(1):17. PubMed ID: 30691455 [TBL] [Abstract][Full Text] [Related]
48. Modulation of Bacillus subtilis alpha-amylase promoter activity by the presence of a palindromic sequence in front of the gene. Takano J; Kinoshita T; Yamane K Biochem Biophys Res Commun; 1987 Jul; 146(1):73-9. PubMed ID: 3111471 [TBL] [Abstract][Full Text] [Related]
49. Isolation and characterization of a cold-active, alkaline, detergent stable α-amylase from a novel bacterium Bacillus subtilis N8. Arabacı N; Arıkan B Prep Biochem Biotechnol; 2018 May; 48(5):419-426. PubMed ID: 29561221 [TBL] [Abstract][Full Text] [Related]
50. Consolidated bioprocessing of raw starch with Saccharomyces cerevisiae strains expressing fungal alpha-amylase and glucoamylase combinations. Sakwa L; Cripwell RA; Rose SH; Viljoen-Bloom M FEMS Yeast Res; 2018 Nov; 18(7):. PubMed ID: 30085077 [TBL] [Abstract][Full Text] [Related]
51. 2,3-butanediol production from starch by engineered Klebsiella pneumoniae G31-A. Tsvetanova F; Petrova P; Petrov K Appl Microbiol Biotechnol; 2014 Mar; 98(6):2441-51. PubMed ID: 24323288 [TBL] [Abstract][Full Text] [Related]
52. Production of L-Lysine from starch by Corynebacterium glutamicum displaying alpha-amylase on its cell surface. Tateno T; Fukuda H; Kondo A Appl Microbiol Biotechnol; 2007 Apr; 74(6):1213-20. PubMed ID: 17216452 [TBL] [Abstract][Full Text] [Related]
53. New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 alpha-amylase contributes to starch binding and raw starch degrading. Sumitani J; Tottori T; Kawaguchi T; Arai M Biochem J; 2000 Sep; 350 Pt 2(Pt 2):477-84. PubMed ID: 10947962 [TBL] [Abstract][Full Text] [Related]
54. Secretion of the cytoplasmic and high molecular weight β-galactosidase of Paenibacillus wynnii with Bacillus subtilis. Senger J; Seitl I; Pross E; Fischer L Microb Cell Fact; 2024 Jun; 23(1):170. PubMed ID: 38867249 [TBL] [Abstract][Full Text] [Related]
55. Deletion analysis of the C-terminal region of the alpha-amylase of Bacillus sp. strain TS-23. Lo HF; Lin LL; Chiang WY; Chie MC; Hsu WH; Chang CT Arch Microbiol; 2002 Aug; 178(2):115-23. PubMed ID: 12115056 [TBL] [Abstract][Full Text] [Related]
56. Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase. Yamakawa S; Yamada R; Tanaka T; Ogino C; Kondo A Enzyme Microb Technol; 2012 May; 50(6-7):343-7. PubMed ID: 22500903 [TBL] [Abstract][Full Text] [Related]
57. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol. Görgens JF; Bressler DC; van Rensburg E Crit Rev Biotechnol; 2015; 35(3):369-91. PubMed ID: 24666118 [TBL] [Abstract][Full Text] [Related]
58. Construction of a highly active secretory expression system via an engineered dual promoter and a highly efficient signal peptide in Bacillus subtilis. Guan C; Cui W; Cheng J; Liu R; Liu Z; Zhou L; Zhou Z N Biotechnol; 2016 May; 33(3):372-9. PubMed ID: 26820123 [TBL] [Abstract][Full Text] [Related]
59. Secreted expression of a hyperthermophilic α-amylase gene from Thermococcus sp. HJ21 in Bacillus subtilis. Ying Q; Zhang C; Guo F; Wang S; Bie X; Lu F; Lu Z J Mol Microbiol Biotechnol; 2012; 22(6):392-8. PubMed ID: 23486110 [TBL] [Abstract][Full Text] [Related]
60. Development of an engineered Bacillus subtilis strain for antibiotic-free sucrose isomerase production. Li M; Ren X; Xu M; Dong S; Li X; Chen X; Wang C; Yang F Biotechnol J; 2024 May; 19(5):e2400178. PubMed ID: 38719574 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]