These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 35761522)
1. Destructive and rapid non-invasive methods used to detect adulteration of dried powdered horticultural products: A review. Faith Ndlovu P; Samukelo Magwaza L; Zeray Tesfay S; Ramaesele Mphahlele R Food Res Int; 2022 Jul; 157():111198. PubMed ID: 35761522 [TBL] [Abstract][Full Text] [Related]
2. Non-Invasive Methods for Predicting the Quality of Processed Horticultural Food Products, with Emphasis on Dried Powders, Juices and Oils: A Review. Okere EE; Arendse E; Nieuwoudt H; Fawole OA; Perold WJ; Opara UL Foods; 2021 Dec; 10(12):. PubMed ID: 34945612 [TBL] [Abstract][Full Text] [Related]
3. An overview of recent advances and applications of FT-IR spectroscopy for quality, authenticity, and adulteration detection in edible oils. Mousa MAA; Wang Y; Antora SA; Al-Qurashi AD; Ibrahim OHM; He HJ; Liu S; Kamruzzaman M Crit Rev Food Sci Nutr; 2022; 62(29):8009-8027. PubMed ID: 33977844 [TBL] [Abstract][Full Text] [Related]
4. Contemporary Developments and Emerging Trends in the Application of Spectroscopy Techniques: A Particular Reference to Coconut ( Pandiselvam R; Kaavya R; Martinez Monteagudo SI; Divya V; Jain S; Khanashyam AC; Kothakota A; Prasath VA; Ramesh SV; Sruthi NU; Kumar M; Manikantan MR; Kumar CA; Khaneghah AM; Cozzolino D Molecules; 2022 May; 27(10):. PubMed ID: 35630725 [TBL] [Abstract][Full Text] [Related]
5. Spice and Herb Frauds: Types, Incidence, and Detection: The State of the Art. Velázquez R; Rodríguez A; Hernández A; Casquete R; Benito MJ; Martín A Foods; 2023 Sep; 12(18):. PubMed ID: 37761082 [TBL] [Abstract][Full Text] [Related]
6. Calibration and testing of a Raman hyperspectral imaging system to reveal powdered food adulteration. Lohumi S; Lee H; Kim MS; Qin J; Kandpal LM; Bae H; Rahman A; Cho BK PLoS One; 2018; 13(4):e0195253. PubMed ID: 29708973 [TBL] [Abstract][Full Text] [Related]
7. Assessing saffron (Crocus sativus L.) adulteration with plant-derived adulterants by diffuse reflectance infrared Fourier transform spectroscopy coupled with chemometrics. Petrakis EA; Polissiou MG Talanta; 2017 Jan; 162():558-566. PubMed ID: 27837871 [TBL] [Abstract][Full Text] [Related]
8. Overview of Analytical Tools for the Identification of Adulterants in Commonly Traded Herbs and Spices. Osman AG; Raman V; Haider S; Ali Z; Chittiboyina AG; Khan IA J AOAC Int; 2019 Mar; 102(2):376-385. PubMed ID: 30646970 [No Abstract] [Full Text] [Related]
9. Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: analytical techniques and challenges. Patel DN; Li L; Kee CL; Ge X; Low MY; Koh HL J Pharm Biomed Anal; 2014 Jan; 87():176-90. PubMed ID: 23721687 [TBL] [Abstract][Full Text] [Related]
10. Detection and quantification of cocoa powder adulteration using Vis-NIR spectroscopy with chemometrics approach. Millatina NRN; Calle JLP; Barea-Sepúlveda M; Setyaningsih W; Palma M Food Chem; 2024 Aug; 449():139212. PubMed ID: 38583399 [TBL] [Abstract][Full Text] [Related]
11. [Research advances in imaging technology for food safety and quality control]. Deng Y; Wang X; Yang M; He M; Zhang F Se Pu; 2020 Jul; 38(7):741-749. PubMed ID: 34213280 [TBL] [Abstract][Full Text] [Related]
12. A comprehensive strategy to detect the fraudulent adulteration of herbs: The oregano approach. Black C; Haughey SA; Chevallier OP; Galvin-King P; Elliott CT Food Chem; 2016 Nov; 210():551-7. PubMed ID: 27211681 [TBL] [Abstract][Full Text] [Related]
13. Comparison of near infrared spectroscopy and Raman spectroscopy for the identification and quantification through MCR-ALS and PLS of peanut oil adulterants. Castro RC; Ribeiro DSM; Santos JLM; Páscoa RNMJ Talanta; 2021 Aug; 230():122373. PubMed ID: 33934802 [TBL] [Abstract][Full Text] [Related]
14. Mid-Infrared Spectroscopy as a Valuable Tool to Tackle Food Analysis: A Literature Review on Coffee, Dairies, Honey, Olive Oil and Wine. Mendes E; Duarte N Foods; 2021 Feb; 10(2):. PubMed ID: 33671755 [TBL] [Abstract][Full Text] [Related]
15. Recent advancements in NIR spectroscopy for assessing the quality and safety of horticultural products: A comprehensive review. Pandiselvam R; Prithviraj V; Manikantan MR; Kothakota A; Rusu AV; Trif M; Mousavi Khaneghah A Front Nutr; 2022; 9():973457. PubMed ID: 36313102 [TBL] [Abstract][Full Text] [Related]
16. Rapid quantification of honey adulteration by visible-near infrared spectroscopy combined with chemometrics. Ferreiro-González M; Espada-Bellido E; Guillén-Cueto L; Palma M; Barroso CG; Barbero GF Talanta; 2018 Oct; 188():288-292. PubMed ID: 30029378 [TBL] [Abstract][Full Text] [Related]
17. Detection of vinegar adulteration with spirit vinegar and acetic acid using UV-visible and Fourier transform infrared spectroscopy. Cavdaroglu C; Ozen B Food Chem; 2022 Jun; 379():132150. PubMed ID: 35065489 [TBL] [Abstract][Full Text] [Related]
19. A review of Fourier Transform Infrared (FTIR) spectroscopy used in food adulteration and authenticity investigations. Valand R; Tanna S; Lawson G; Bengtström L Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2020 Jan; 37(1):19-38. PubMed ID: 31613710 [TBL] [Abstract][Full Text] [Related]
20. Quantitative evaluation of multiple adulterants in roasted coffee by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and chemometrics. Reis N; Franca AS; Oliveira LS Talanta; 2013 Oct; 115():563-8. PubMed ID: 24054633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]