BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 3576178)

  • 41. Chronic lead nephropathy in Queensland: alternative methods of diagnosis.
    Craswell PW; Price J; Boyle PD; Heazlewood VJ; Baddeley H; Lloyd HM; Thomas BJ; Thomas BW; Williams GM
    Aust N Z J Med; 1986 Feb; 16(1):11-9. PubMed ID: 3085647
    [TBL] [Abstract][Full Text] [Related]  

  • 42. L-line x-ray fluorescence of cortical bone lead compared with the CaNa2EDTA test in lead-toxic children: public health implications.
    Rosen JF; Markowitz ME; Bijur PE; Jenks ST; Wielopolski L; Kalef-Ezra JA; Slatkin DN
    Proc Natl Acad Sci U S A; 1989 Jan; 86(2):685-9. PubMed ID: 2492111
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assessment of the body burden of chelatable lead: a model and its application to lead workers.
    Araki S; Ushio K
    Br J Ind Med; 1982 May; 39(2):157-60. PubMed ID: 6802167
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Factors influencing uncertainties of in vivo bone lead measurement using a (109)Cd K X-ray fluorescence clover leaf geometry detector system.
    Behinaein S; Chettle DR; Marro L; Malowany M; Fisher M; Fleming DE; Healey N; Inskip M; Arbuckle TE; McNeill FE
    Environ Sci Process Impacts; 2014 Dec; 16(12):2742-51. PubMed ID: 25322174
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of two in vitro methods of bone lead analysis and the implications for in vivo measurements.
    Somervaille LJ; Chettle DR; Scott MC; Aufderheide AC; Wallgren JE; Wittmers LE; Rapp GR
    Phys Med Biol; 1986 Nov; 31(11):1267-74. PubMed ID: 3786412
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Grid search: an innovative method for the estimation of the rates of lead exchange between body compartments.
    Brito JA; McNeill FE; Webber CE; Chettle DR
    J Environ Monit; 2005 Mar; 7(3):241-7. PubMed ID: 15735782
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lead in the bone and soft tissues of box turtles caught near smelters.
    Beresford WA; Donovan MP; Henninger JM; Waalkes MP
    Bull Environ Contam Toxicol; 1981 Sep; 27(3):349-52. PubMed ID: 7296070
    [No Abstract]   [Full Text] [Related]  

  • 48. Characterization and imaging of lead distribution in bones of lead-exposed birds by ICP-MS and LA-ICP-MS.
    Ishii C; Nakayama SMM; Kataba A; Ikenaka Y; Saito K; Watanabe Y; Makino Y; Matsukawa T; Kubota A; Yokoyama K; Mizukawa H; Hirata T; Ishizuka M
    Chemosphere; 2018 Dec; 212():994-1001. PubMed ID: 30286556
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bone lead, hypertension, and lead nephropathy.
    Wedeen RP
    Environ Health Perspect; 1988 Jun; 78():57-60. PubMed ID: 3203647
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interrelations of lead levels in bone, venous blood, and umbilical cord blood with exogenous lead exposure through maternal plasma lead in peripartum women.
    Chuang HY; Schwartz J; Gonzales-Cossio T; Lugo MC; Palazuelos E; Aro A; Hu H; Hernandez-Avila M
    Environ Health Perspect; 2001 May; 109(5):527-32. PubMed ID: 11401766
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The relationship of bone and blood lead to hypertension. The Normative Aging Study.
    Hu H; Aro A; Payton M; Korrick S; Sparrow D; Weiss ST; Rotnitzky A
    JAMA; 1996 Apr; 275(15):1171-6. PubMed ID: 8609684
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improvements in the precision of in vivo bone lead measurements.
    Chettle DR; Scott MC; Somervaille LJ
    Phys Med Biol; 1989 Sep; 34(9):1295-300. PubMed ID: 2798561
    [No Abstract]   [Full Text] [Related]  

  • 53. Kinetics of lead in bone and blood after end of occupational exposure.
    Nilsson U; Attewell R; Christoffersson JO; Schütz A; Ahlgren L; Skerfving S; Mattsson S
    Pharmacol Toxicol; 1991 Jun; 68(6):477-84. PubMed ID: 1891443
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Relationship between bone lead and other indices of lead exposure in smelter workers.
    Bleecker ML; McNeill FE; Lindgren KN; Masten VL; Ford DP
    Toxicol Lett; 1995 May; 77(1-3):241-8. PubMed ID: 7618146
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Validation of K x-ray fluorescence bone lead measurements by inductively coupled plasma mass spectrometry in cadaver legs.
    Aro A; Amarasiriwardena C; Lee ML; Kim R; Hu H
    Med Phys; 2000 Jan; 27(1):119-23. PubMed ID: 10659745
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vivo measurement of lead in bone using x-ray fluorescence.
    Somervaille LJ; Chettle DR; Scott MC
    Phys Med Biol; 1985 Sep; 30(9):929-43. PubMed ID: 4048276
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Provocative chelation with DMSA and EDTA: evidence for differential access to lead storage sites.
    Lee BK; Schwartz BS; Stewart W; Ahn KD
    Occup Environ Med; 1995 Jan; 52(1):13-9. PubMed ID: 7697134
    [TBL] [Abstract][Full Text] [Related]  

  • 58. L-shell x-ray fluorescence measurements of lead in bone: theoretical considerations.
    Todd AC
    Phys Med Biol; 2002 Feb; 47(3):491-505. PubMed ID: 11848124
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selected aspects of the spatial distribution of lead in bone.
    Aufderheide AC; Wittmers LE
    Neurotoxicology; 1992; 13(4):809-19. PubMed ID: 1302307
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The use of K X-ray fluorescence for measuring lead burden in epidemiological studies: high and low lead burdens and measurement uncertainty.
    Hu H; Milder FL; Burger DE
    Environ Health Perspect; 1991 Aug; 94():107-10. PubMed ID: 1954919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.