These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 35762206)
21. Essence of the Enhanced Osmotic Energy Conversion in a Covalent Organic Framework Monolayer. Huang Z; Fang M; Tu B; Yang J; Yan Z; Alemayehu HG; Tang Z; Li L ACS Nano; 2022 Oct; 16(10):17149-17156. PubMed ID: 36165566 [TBL] [Abstract][Full Text] [Related]
22. Oxidation promoted osmotic energy conversion in black phosphorus membranes. Zhang Z; Zhang P; Yang S; Zhang T; Löffler M; Shi H; Lohe MR; Feng X Proc Natl Acad Sci U S A; 2020 Jun; 117(25):13959-13966. PubMed ID: 32513735 [TBL] [Abstract][Full Text] [Related]
23. Surfactant-Assisted Sulfonated Covalent Organic Nanosheets: Extrinsic Charge for Improved Ion Transport and Salinity-Gradient Energy Harvesting. Zhou S; Hu Y; Xin W; Fu L; Lin X; Yang L; Hou S; Kong XY; Jiang L; Wen L Adv Mater; 2023 Feb; 35(6):e2208640. PubMed ID: 36457170 [TBL] [Abstract][Full Text] [Related]
24. Serosa-Mimetic Nanoarchitecture Membranes for Highly Efficient Osmotic Energy Generation. Man Z; Safaei J; Zhang Z; Wang Y; Zhou D; Li P; Zhang X; Jiang L; Wang G J Am Chem Soc; 2021 Oct; 143(39):16206-16216. PubMed ID: 34570466 [TBL] [Abstract][Full Text] [Related]
25. Janus Metal-Organic Framework Membranes Boosting the Osmotic Energy Harvesting. Li ZQ; Zhu GL; Mo RJ; Wu MY; Ding XL; Huang LQ; Wu ZQ; Xia XH ACS Appl Mater Interfaces; 2023 May; 15(19):23922-23930. PubMed ID: 37145874 [TBL] [Abstract][Full Text] [Related]
26. Light-responsive and ultrapermeable two-dimensional metal-organic framework membrane for efficient ionic energy harvesting. Wang J; Song Z; He M; Qian Y; Wang D; Cui Z; Feng Y; Li S; Huang B; Kong X; Han J; Wang L Nat Commun; 2024 Mar; 15(1):2125. PubMed ID: 38459037 [TBL] [Abstract][Full Text] [Related]
27. Advancing Ion Separation: Covalent-Organic-Framework Membranes for Sustainable Energy and Water Applications. Xian W; Wu D; Lai Z; Wang S; Sun Q Acc Chem Res; 2024 Jul; 57(14):1973-1984. PubMed ID: 38950424 [TBL] [Abstract][Full Text] [Related]
28. Unleashing the Power of Osmotic Energy: Metal Hydroxide-Organic Framework Membranes for Efficient Conversion. Zeng H; Yao C; Wu C; Wang D; Ma W; Wang J Small; 2024 Jun; 20(26):e2310811. PubMed ID: 38299466 [TBL] [Abstract][Full Text] [Related]
29. Two-Dimensional Nanofluidic Membranes with Intercalated In-Plane Shortcuts for High-Performance Blue Energy Harvesting. Yan PP; Chen XC; Liang ZX; Fang YP; Yao J; Lu CX; Cai Y; Jiang L Small; 2023 Jan; 19(4):e2205003. PubMed ID: 36424182 [TBL] [Abstract][Full Text] [Related]
30. Enhancing Ionic Selectivity and Osmotic Energy by Using an Ultrathin Zr-MOF-Based Heterogeneous Membrane with Trilayered Continuous Porous Structure. Yang ZJ; Yeh LH; Peng YH; Chuang YP; Wu KC Angew Chem Int Ed Engl; 2024 Aug; 63(35):e202408375. PubMed ID: 38847272 [TBL] [Abstract][Full Text] [Related]
31. Heterogeneous CNF/MoO Zheng M; Liu P; Yan P; Zhou T; Lin X; Li X; Wen L; Xu Q Mater Horiz; 2024 Jul; 11(14):3375-3385. PubMed ID: 38686603 [TBL] [Abstract][Full Text] [Related]
32. Electrodeposited MOFs Membrane with In Situ Incorporation of Charged Molecules for Osmotic Energy Harvesting. Yao B; Hussain S; Ye Z; Peng X Small; 2023 May; 19(18):e2207559. PubMed ID: 36725315 [TBL] [Abstract][Full Text] [Related]
33. Unipolar Ionic Diode Nanofluidic Membranes Enabled by Stepped Mesochannels for Enhanced Salinity Gradient Energy Harvesting. Yang Y; Zhou S; Lv Z; Hung CT; Zhao Z; Zhao T; Chao D; Kong B; Zhao D J Am Chem Soc; 2024 Jul; 146(28):19580-19589. PubMed ID: 38977375 [TBL] [Abstract][Full Text] [Related]
34. A facile strategy for the preparation of carbon nanotubes/polybutadiene crosslinked composite membrane and its application in osmotic energy harvesting. Lin C; Hao J; Zhao J; Hou Y; Ma S; Sui X J Colloid Interface Sci; 2024 Jan; 654(Pt B):840-847. PubMed ID: 37898068 [TBL] [Abstract][Full Text] [Related]
35. Enhanced Selective Ion Transport in Highly Charged Bacterial Cellulose/Boron Nitride Composite Membranes for Thermo-Osmotic Energy Harvesting. Jia X; Zhang M; Zhang Y; Fu Y; Sheng N; Chen S; Wang H; Du Y Nano Lett; 2024 Feb; 24(7):2218-2225. PubMed ID: 38277614 [TBL] [Abstract][Full Text] [Related]
36. Horizontally Asymmetric Nanochannels of Graphene Oxide Membranes for Efficient Osmotic Energy Harvesting. Bang KR; Kwon C; Lee H; Kim S; Cho ES ACS Nano; 2023 Jun; 17(11):10000-10009. PubMed ID: 37196224 [TBL] [Abstract][Full Text] [Related]
37. Unlocking osmotic energy harvesting potential in challenging real-world hypersaline environments through vermiculite-based hetero-nanochannels. Wang J; Cui Z; Li S; Song Z; He M; Huang D; Feng Y; Liu Y; Zhou K; Wang X; Wang L Nat Commun; 2024 Jan; 15(1):608. PubMed ID: 38242879 [TBL] [Abstract][Full Text] [Related]
38. Asymmetric Nanoporous Alumina Membranes for Nanofluidic Osmotic Energy Conversion. Zhang Y; Wang H; Wang J; Li L; Sun H; Wang C Chem Asian J; 2023 Dec; 18(23):e202300876. PubMed ID: 37886875 [TBL] [Abstract][Full Text] [Related]
39. Molecular self-assembled cellulose enabling durable, scalable, high-power osmotic energy harvesting. Shi J; Sun X; Zhang Y; Niu S; Wang Z; Wu Z; An M; Chen L; Li J Carbohydr Polym; 2024 Mar; 327():121656. PubMed ID: 38171677 [TBL] [Abstract][Full Text] [Related]
40. Bioinspired Angstrom-Scale Heterogeneous MOF-on-MOF Membrane for Osmotic Energy Harvesting. Tonnah RK; Chai M; Abdollahzadeh M; Xiao H; Mohammad M; Hosseini E; Zakertabrizi M; Jarrahbashi D; Asadi A; Razmjou A; Asadnia M ACS Nano; 2023 Jul; 17(13):12445-12457. PubMed ID: 37347939 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]