BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35762329)

  • 1. A large-scale pico-droplet array for viable bacteria digital counting and dynamic tracking based on a thermosetting oil.
    Suo Y; Yin W; Wu W; Cao W; Zhu Q; Mu Y
    Analyst; 2022 Jul; 147(14):3305-3314. PubMed ID: 35762329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilized Droplet Arrays in Thermosetting Oil for Dynamic Proteolytic Assays of Single Cells.
    Wu W; Zhang S; Zhang T; Mu Y
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6081-6090. PubMed ID: 33504155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single Escherichia coli bacteria detection using a chemiluminescence digital microwell array chip.
    Wu W; Nguyen BTT; Liu PY; Cai G; Feng S; Shi Y; Zhang B; Hong Y; Yu R; Zhou X; Liu AQ; Zhang Y; Yap EPH; Chin LK
    Biosens Bioelectron; 2022 Nov; 215():114594. PubMed ID: 35932553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple and Precise Counting of Viable Bacteria by Resazurin-Amplified Picoarray Detection.
    Hsieh K; Zec HC; Chen L; Kaushik AM; Mach KE; Liao JC; Wang TH
    Anal Chem; 2018 Aug; 90(15):9449-9456. PubMed ID: 29969556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital
    Rauf S; Tashkandi N; de Oliveira Filho JI; Oviedo-Osornio CI; Danish MS; Hong PY; Salama KN
    Biosensors (Basel); 2022 Jan; 12(1):. PubMed ID: 35049662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Counting bacteria in microfluidic devices: Smartphone compatible 'dip-and-test' viable cell quantitation using resazurin amplified detection in microliter capillary arrays.
    Needs SH; Osborn HMI; Edwards AD
    J Microbiol Methods; 2021 Aug; 187():106199. PubMed ID: 33771524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A highly addressable static droplet array enabling digital control of a single droplet at pico-volume resolution.
    Jeong HH; Lee B; Jin SH; Jeong SG; Lee CS
    Lab Chip; 2016 Apr; 16(9):1698-707. PubMed ID: 27075732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viable Escherichia coli enumeration on a polydimethylsiloxane (PDMS) chip with vertical channel-well configuration.
    Wu W; Zhao Q; Zhang B
    Mikrochim Acta; 2024 Apr; 191(5):241. PubMed ID: 38573377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas Crosstalk between PFPE-PEG-PFPE Triblock Copolymer Surfactant-Based Microdroplets and Monitoring Bacterial Gas Metabolism with Droplet-Based Microfluidics.
    Ki S; Kang DK
    Biosensors (Basel); 2020 Nov; 10(11):. PubMed ID: 33187348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic droplet digital PCR for simultaneous detection of pathogenic Escherichia coli O157 and Listeria monocytogenes.
    Bian X; Jing F; Li G; Fan X; Jia C; Zhou H; Jin Q; Zhao J
    Biosens Bioelectron; 2015 Dec; 74():770-7. PubMed ID: 26226346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single cell droplet microfluidic system for quantitative determination of food-borne pathogens.
    An X; Zuo P; Ye BC
    Talanta; 2020 Mar; 209():120571. PubMed ID: 31892085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forming a Large-Scale Droplet Array in a Microcage Array Chip for High-Throughput Screening.
    Xu JG; Huang MS; Wang HF; Fang Q
    Anal Chem; 2019 Aug; 91(16):10757-10763. PubMed ID: 31335121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput screening of microchip-synthesized genes in programmable double-emulsion droplets.
    Chan HF; Ma S; Tian J; Leong KW
    Nanoscale; 2017 Mar; 9(10):3485-3495. PubMed ID: 28239692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free counting of Escherichia coli cells in nanoliter droplets using 3D printed microfluidic devices with integrated contactless conductivity detection.
    Duarte LC; Figueredo F; Ribeiro LEB; Cortón E; Coltro WKT
    Anal Chim Acta; 2019 Sep; 1071():36-43. PubMed ID: 31128753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digital metabolic activity assay enables fast assessment of 2D materials bactericidal efficiency.
    Wu W; Kiat Goh SC; Cai G; Feng S; Zhang B
    Anal Chim Acta; 2024 Jan; 1285():342007. PubMed ID: 38057056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smartphone-based rapid quantification of viable bacteria by single-cell microdroplet turbidity imaging.
    Cui X; Ren L; Shan Y; Wang X; Yang Z; Li C; Xu J; Ma B
    Analyst; 2018 Jul; 143(14):3309-3316. PubMed ID: 29774899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High throughput single cell counting in droplet-based microfluidics.
    Lu H; Caen O; Vrignon J; Zonta E; El Harrak Z; Nizard P; Baret JC; Taly V
    Sci Rep; 2017 May; 7(1):1366. PubMed ID: 28465615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid Detection of β-Lactamase-Producing Bacteria Using the Integrated Comprehensive Droplet Digital Detection (IC 3D) System.
    Li Y; Cherukury H; Labanieh L; Zhao W; Kang DK
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32824984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple magnetic-assisted microfluidic method for rapid detection and phenotypic characterization of ultralow concentrations of bacteria.
    Rodoplu D; Chang CS; Kao CY; Hsu CH
    Talanta; 2021 Aug; 230():122291. PubMed ID: 33934763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation-amplified synchronized droplet microfluidics sensitizes bacterial growth kinetic real-time monitoring.
    Zhong J; Chang Y; Liang M; Zhou Y; Ai Y
    Biosens Bioelectron; 2024 Sep; 259():116397. PubMed ID: 38772249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.