These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35762686)

  • 1. Automated Bonding Analysis with Crystal Orbital Hamilton Populations.
    George J; Petretto G; Naik A; Esters M; Jackson AJ; Nelson R; Dronskowski R; Rignanese GM; Hautier G
    Chempluschem; 2022 Jun; 87(11):e202200123. PubMed ID: 35762686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Bonding Analysis with Crystal Orbital Hamilton Populations.
    George J; Petretto G; Naik A; Esters M; Jackson AJ; Nelson R; Dronskowski R; Rignanese GM; Hautier G
    Chempluschem; 2022 Nov; 87(11):e202200246. PubMed ID: 35946984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlations between Density-Based Bond Orders and Orbital-Based Bond Energies for Chemical Bonding Analysis.
    Rohling RY; Tranca IC; Hensen EJM; Pidko EA
    J Phys Chem C Nanomater Interfaces; 2019 Feb; 123(5):2843-2854. PubMed ID: 30842801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LOBSTER: Local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory.
    Nelson R; Ertural C; George J; Deringer VL; Hautier G; Dronskowski R
    J Comput Chem; 2020 Aug; 41(21):1931-1940. PubMed ID: 32531113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets.
    Deringer VL; Tchougréeff AL; Dronskowski R
    J Phys Chem A; 2011 Jun; 115(21):5461-6. PubMed ID: 21548594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Quantum-Chemical Bonding Database for Solid-State Materials.
    Naik AA; Ertural C; Dhamrait N; Benner P; George J
    Sci Data; 2023 Sep; 10(1):610. PubMed ID: 37696882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT.
    Maintz S; Deringer VL; Tchougréeff AL; Dronskowski R
    J Comput Chem; 2016 Apr; 37(11):1030-5. PubMed ID: 26914535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrational properties and bonding nature of Sb
    Deringer VL; Stoffel RP; Wuttig M; Dronskowski R
    Chem Sci; 2015 Sep; 6(9):5255-5262. PubMed ID: 29449929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cationic Site-Preference in the Yb
    Nam G; Jang E; Jo H; Han MK; Kim SJ; Ok KM; You TS
    Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-Principles Chemical Bonding Study of Manganese Carbodiimide, MnNCN, As Compared to Manganese Oxide, MnO.
    Nelson R; Konze PM; Dronskowski R
    J Phys Chem A; 2017 Oct; 121(40):7778-7786. PubMed ID: 28933545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient PAW-based bond strength analysis for understanding the In/Si(111)(8 × 2) - (4 × 1) phase transition.
    Lücke A; Gerstmann U; Kühne TD; Schmidt WG
    J Comput Chem; 2017 Oct; 38(26):2276-2282. PubMed ID: 28718945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrasts in structural and bonding representations among polar intermetallic compounds. Strongly differentiated Hamilton populations for three related condensed cluster halides of the rare-earth elements.
    Gupta S; Meyer G; Corbett JD
    Inorg Chem; 2010 Nov; 49(21):9949-57. PubMed ID: 20886870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles and molecular-dynamics study of structure and bonding in perovskite-type oxynitrides ABO(2)N (A = Ca, Sr, Ba; B = Ta, Nb).
    Wolff H; Dronskowski R
    J Comput Chem; 2008 Oct; 29(13):2260-7. PubMed ID: 18270967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-Principles Study of Divalent 3d Transition-Metal Carbodiimides.
    Chen K; Dronskowski R
    J Phys Chem A; 2019 Oct; 123(43):9328-9335. PubMed ID: 31584276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Bonding Model of Radical Adsorbate on Lattice Oxygen of Perovskites.
    Fung V; Wu Z; Jiang DE
    J Phys Chem Lett; 2018 Nov; 9(21):6321-6325. PubMed ID: 30336033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An automatically curated first-principles database of ferroelectrics.
    Smidt TE; Mack SA; Reyes-Lillo SE; Jain A; Neaton JB
    Sci Data; 2020 Mar; 7(1):72. PubMed ID: 32127531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nature of the chemical bond revisited: an energy-partitioning analysis of nonpolar bonds.
    Kovács A; Esterhuysen C; Frenking G
    Chemistry; 2005 Mar; 11(6):1813-25. PubMed ID: 15672434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids.
    Maintz S; Deringer VL; Tchougréeff AL; Dronskowski R
    J Comput Chem; 2013 Nov; 34(29):2557-67. PubMed ID: 24022911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of multivalley Fermi surface responsible for the high thermoelectric performance in Yb
    Perez CJ; Wood M; Ricci F; Yu G; Vo T; Bux SK; Hautier G; Rignanese GM; Snyder GJ; Kauzlarich SM
    Sci Adv; 2021 Jan; 7(4):. PubMed ID: 33523935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-Range Forces in Rock-Salt-Type Tellurides and How they Mirror the Underlying Chemical Bonding.
    Hempelmann J; Müller PC; Konze PM; Stoffel RP; Steinberg S; Dronskowski R
    Adv Mater; 2021 Sep; 33(37):e2100163. PubMed ID: 34323316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.