These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35762724)

  • 21. Switch or funnel: how RND-type transport systems control periplasmic metal homeostasis.
    Kim EH; Nies DH; McEvoy MM; Rensing C
    J Bacteriol; 2011 May; 193(10):2381-7. PubMed ID: 21398536
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Copper Relay System Involving Two Periplasmic Chaperones Drives cbb
    Trasnea PI; Andrei A; Marckmann D; Utz M; Khalfaoui-Hassani B; Selamoglu N; Daldal F; Koch HG
    ACS Chem Biol; 2018 May; 13(5):1388-1397. PubMed ID: 29613755
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CpxR/CpxA Controls
    López C; Checa SK; Soncini FC
    J Bacteriol; 2018 Aug; 200(16):. PubMed ID: 29866803
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The ropAe gene encodes a porin-like protein involved in copper transit in Rhizobium etli CFN42.
    González-Sánchez A; Cubillas CA; Miranda F; Dávalos A; García-de Los Santos A
    Microbiologyopen; 2018 Jun; 7(3):e00573. PubMed ID: 29280343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compartment and signal-specific codependence in the transcriptional control of Salmonella periplasmic copper homeostasis.
    Pezza A; Pontel LB; López C; Soncini FC
    Proc Natl Acad Sci U S A; 2016 Oct; 113(41):11573-11578. PubMed ID: 27679850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Charged amino acids (R83, E567, D617, E625, R669, and K678) of CusA are required for metal ion transport in the Cus efflux system.
    Su CC; Long F; Lei HT; Bolla JR; Do SV; Rajashankar KR; Yu EW
    J Mol Biol; 2012 Sep; 422(3):429-41. PubMed ID: 22683351
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The copper-linked Escherichia coli AZY operon: Structure, metal binding, and a possible physiological role in copper delivery.
    Hadley RC; Zhitnitsky D; Livnat-Levanon N; Masrati G; Vigonsky E; Rose J; Ben-Tal N; Rosenzweig AC; Lewinson O
    J Biol Chem; 2022 Jan; 298(1):101445. PubMed ID: 34822841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How Mammalian Cells Acquire Copper: An Essential but Potentially Toxic Metal.
    Kaplan JH; Maryon EB
    Biophys J; 2016 Jan; 110(1):7-13. PubMed ID: 26745404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A critical role of the periplasm in copper homeostasis in Gram-negative bacteria.
    Ishihara JI; Mekubo T; Kusaka C; Kondo S; Oiko R; Igarashi K; Aiba H; Ishikawa S; Ogasawara N; Oshima T; Takahashi H
    Biosystems; 2023 Sep; 231():104980. PubMed ID: 37453610
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Copper transport and trafficking at the host-bacterial pathogen interface.
    Fu Y; Chang FM; Giedroc DP
    Acc Chem Res; 2014 Dec; 47(12):3605-13. PubMed ID: 25310275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A periplasmic iron-binding protein contributes toward inward copper supply.
    Waldron KJ; Tottey S; Yanagisawa S; Dennison C; Robinson NJ
    J Biol Chem; 2007 Feb; 282(6):3837-46. PubMed ID: 17148438
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding.
    Tottey S; Waldron KJ; Firbank SJ; Reale B; Bessant C; Sato K; Cheek TR; Gray J; Banfield MJ; Dennison C; Robinson NJ
    Nature; 2008 Oct; 455(7216):1138-42. PubMed ID: 18948958
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The heavy metal tolerant soil bacterium Achromobacter sp. AO22 contains a unique copper homeostasis locus and two mer operons.
    Ng SP; Palombo EA; Bhave M
    J Microbiol Biotechnol; 2012 Jun; 22(6):742-53. PubMed ID: 22573150
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural intermediates observed only in intact
    Nilaweera TD; Nyenhuis DA; Cafiso DS
    Elife; 2021 Jul; 10():. PubMed ID: 34251336
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reconstitution of a thermophilic Cu
    Logeman BL; Thiele DJ
    J Biol Chem; 2018 Oct; 293(40):15497-15512. PubMed ID: 30131336
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Sensory Histidine Kinase CusS of Escherichia coli Senses Periplasmic Copper Ions.
    Rismondo J; Große C; Nies DH
    Microbiol Spectr; 2023 Mar; 11(2):e0029123. PubMed ID: 36916932
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The ABCDs of periplasmic copper trafficking.
    Puig S; Rees EM; Thiele DJ
    Structure; 2002 Oct; 10(10):1292-5. PubMed ID: 12377116
    [TBL] [Abstract][Full Text] [Related]  

  • 38. X-ray structures of the high-affinity copper transporter Ctr1.
    Ren F; Logeman BL; Zhang X; Liu Y; Thiele DJ; Yuan P
    Nat Commun; 2019 Mar; 10(1):1386. PubMed ID: 30918258
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution and diversity of periplasmic proteins involved in copper homeostasis in gamma proteobacteria.
    Hernández-Montes G; Argüello JM; Valderrama B
    BMC Microbiol; 2012 Nov; 12():249. PubMed ID: 23122209
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Copper-transporting ATPases: The evolutionarily conserved machineries for balancing copper in living systems.
    Migocka M
    IUBMB Life; 2015 Oct; 67(10):737-45. PubMed ID: 26422816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.