These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35762978)

  • 1. Characterization of wax valving and μPIV analysis of microscale flow in paper-fluidic devices for improved modeling and design.
    Newsham EI; Phillips EA; Ma H; Chang MM; Wereley ST; Linnes JC
    Lab Chip; 2022 Jul; 22(14):2741-2752. PubMed ID: 35762978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermally actuated wax valves for paper-fluidic diagnostics.
    Phillips EA; Shen R; Zhao S; Linnes JC
    Lab Chip; 2016 Oct; 16(21):4230-4236. PubMed ID: 27722697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices.
    Toley BJ; Wang JA; Gupta M; Buser JR; Lafleur LK; Lutz BR; Fu E; Yager P
    Lab Chip; 2015 Mar; 15(6):1432-44. PubMed ID: 25606810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optically-controlled closable microvalves for polymeric centrifugal microfluidic devices.
    Woolf MS; Dignan LM; Lewis HM; Tomley CJ; Nauman AQ; Landers JP
    Lab Chip; 2020 Apr; 20(8):1426-1440. PubMed ID: 32201873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microvalves for Applications in Centrifugal Microfluidics.
    Peshin S; Madou M; Kulinsky L
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant pathogen detection on a lab-on-a-disc using solid-phase extraction and isothermal nucleic acid amplification enabled by digital pulse-actuated dissolvable film valves.
    Mishra R; Julius LA; Condon J; Pavelskopfa P; Early PL; Dorrian M; Mrvova K; Henihan G; Mangwanya F; Dreo T; Ducrée J; Macdonald NP; Schoen C; Kinahan DJ
    Anal Chim Acta; 2023 Jun; 1258():341070. PubMed ID: 37087288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capillary Flow-Driven and Magnetically Actuated Multi-Use Wax Valves for Controlled Sealing and Releasing of Fluids on Centrifugal Microfluidic Platforms.
    Peshin S; George D; Shiri R; Kulinsky L; Madou M
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic flow delay through passive wax valves for paper-based analytical devices.
    Meng H; Chen C; Zhu Y; Li Z; Ye F; Ho JWK; Chen H
    Lab Chip; 2021 Oct; 21(21):4166-4176. PubMed ID: 34541589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An inkjet-printed electrowetting valve for paper-fluidic sensors.
    Koo CK; He F; Nugen SR
    Analyst; 2013 Sep; 138(17):4998-5004. PubMed ID: 23828822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Event-triggered logical flow control for comprehensive process integration of multi-step assays on centrifugal microfluidic platforms.
    Kinahan DJ; Kearney SM; Dimov N; Glynn MT; Ducrée J
    Lab Chip; 2014 Jul; 14(13):2249-58. PubMed ID: 24811251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid development and optimization of paper microfluidic designs using software automation.
    Potter J; Brisk P; Grover WH
    Anal Chim Acta; 2021 Nov; 1184():338985. PubMed ID: 34625247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluidic low pass filter for hydrodynamic flow stabilization in microfluidic environments.
    Kang YJ; Yang S
    Lab Chip; 2012 Apr; 12(10):1881-9. PubMed ID: 22437280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A paper-based microfluidic platform with shape-memory-polymer-actuated fluid valves for automated multi-step immunoassays.
    Fu H; Song P; Wu Q; Zhao C; Pan P; Li X; Li-Jessen NYK; Liu X
    Microsyst Nanoeng; 2019; 5():50. PubMed ID: 31636936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluidic automation of nitrate and nitrite bioassays in whole blood by dissolvable-film based centrifugo-pneumatic actuation.
    Nwankire CE; Chan DS; Gaughran J; Burger R; Gorkin R; Ducrée J
    Sensors (Basel); 2013 Aug; 13(9):11336-49. PubMed ID: 24064595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling-Guided Design of Paper Microfluidic Networks: A Case Study of Sequential Fluid Delivery.
    Rath D; Toley BJ
    ACS Sens; 2021 Jan; 6(1):91-99. PubMed ID: 33382580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic "Pouch" Chips for Immunoassays and Nucleic Acid Amplification Tests.
    Mauk MG; Liu C; Qiu X; Chen D; Song J; Bau HH
    Methods Mol Biol; 2017; 1572():467-488. PubMed ID: 28299706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Centrifugal microfluidic platforms: advanced unit operations and applications.
    Strohmeier O; Keller M; Schwemmer F; Zehnle S; Mark D; von Stetten F; Zengerle R; Paust N
    Chem Soc Rev; 2015 Oct; 44(17):6187-229. PubMed ID: 26035697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional paper networks: programmable fluidic disconnects for multi-step processes in shaped paper.
    Lutz BR; Trinh P; Ball C; Fu E; Yager P
    Lab Chip; 2011 Dec; 11(24):4274-8. PubMed ID: 22037591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication, Flow Control, and Applications of Microfluidic Paper-Based Analytical Devices.
    Lim H; Jafry AT; Lee J
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31394856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionogel-based light-actuated valves for controlling liquid flow in micro-fluidic manifolds.
    Benito-Lopez F; Byrne R; Răduţă AM; Vrana NE; McGuinness G; Diamond D
    Lab Chip; 2010 Jan; 10(2):195-201. PubMed ID: 20066247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.