These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35763134)

  • 21. Using machine learning models to predict the effects of seasonal fluxes on Plesiomonas shigelloides population density.
    Ekundayo TC; Ijabadeniyi OA; Igbinosa EO; Okoh AI
    Environ Pollut; 2023 Jan; 317():120734. PubMed ID: 36455774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Subsurface biogeochemistry is a missing link between ecology and hydrology in dam-impacted river corridors.
    Graham EB; Stegen JC; Huang M; Chen X; Scheibe TD
    Sci Total Environ; 2019 Mar; 657():435-445. PubMed ID: 30550907
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dam regulation and riverine food-web structure in a Mediterranean river.
    Mor JR; Ruhí A; Tornés E; Valcárcel H; Muñoz I; Sabater S
    Sci Total Environ; 2018 Jun; 625():301-310. PubMed ID: 29289778
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrologic balance and inundation dynamics of Southeast Asia's largest inland lake altered by hydropower dams in the Mekong River basin.
    Dang H; Pokhrel Y; Shin S; Stelly J; Ahlquist D; Du Bui D
    Sci Total Environ; 2022 Jul; 831():154833. PubMed ID: 35364162
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A river basin spatial model to quantitively advance understanding of riverine tree response dynamics to water availability and hydrological management.
    Doody TM; Gao S; Vervoort W; Pritchard J; Davies M; Nolan M; Nagler PL
    J Environ Manage; 2023 Apr; 332():117393. PubMed ID: 36739773
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dams in the Cadillac Desert: downstream effects in a geomorphic context.
    Sabo JL; Bestgen K; Graf W; Sinha T; Wohl EE
    Ann N Y Acad Sci; 2012 Feb; 1249():227-46. PubMed ID: 22329918
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Soil salinity prediction using hybrid machine learning and remote sensing in Ben Tre province on Vietnam's Mekong River Delta.
    Nguyen HD; Van CP; Nguyen TG; Dang DK; Pham TTN; Nguyen QH; Bui QT
    Environ Sci Pollut Res Int; 2023 Jun; 30(29):74340-74357. PubMed ID: 37204580
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of Spatial Pattern of Altered Flow Regimes on a River Network Using a Distributed Hydrological Model.
    Ryo M; Iwasaki Y; Yoshimura C; Saavedra V OC
    PLoS One; 2015; 10(7):e0133833. PubMed ID: 26207997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmental impacts of a reduced flow stretch on hydropower plants.
    Souza-Cruz-Buenaga FVA; Espig SA; Castro TLC; Santos MA
    Braz J Biol; 2019; 79(3):470-487. PubMed ID: 30304254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparing linear and non-linear data-driven approaches in monthly river flow prediction, based on the models SARIMA, LSSVM, ANFIS, and GMDH.
    Khodakhah H; Aghelpour P; Hamedi Z
    Environ Sci Pollut Res Int; 2022 Mar; 29(15):21935-21954. PubMed ID: 34773585
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing the performance of a suite of machine learning models for daily river water temperature prediction.
    Zhu S; Nyarko EK; Hadzima-Nyarko M; Heddam S; Wu S
    PeerJ; 2019; 7():e7065. PubMed ID: 31198649
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigating the impacts of cascade hydropower development on the natural flow regime in the Yangtze River, China.
    Wang Y; Zhang N; Wang D; Wu J; Zhang X
    Sci Total Environ; 2018 May; 624():1187-1194. PubMed ID: 29929231
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Least square support vector machine-based variational mode decomposition: a new hybrid model for daily river water temperature modeling.
    Heddam S; Ptak M; Sojka M; Kim S; Malik A; Kisi O; Zounemat-Kermani M
    Environ Sci Pollut Res Int; 2022 Oct; 29(47):71555-71582. PubMed ID: 35604598
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regression models for sediment transport in tropical rivers.
    Harun MA; Safari MJS; Gul E; Ab Ghani A
    Environ Sci Pollut Res Int; 2021 Oct; 28(38):53097-53115. PubMed ID: 34023993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Linking river flow regimes to riparian plant guilds: a community-wide modeling approach.
    Lytle DA; Merritt DM; Tonkin JD; Olden JD; Reynolds LV
    Ecol Appl; 2017 Jun; 27(4):1338-1350. PubMed ID: 28263426
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Environmental and spatial correlates of hydrologic alteration in a large Mediterranean river catchment.
    Radinger J; Alcaraz-Hernández JD; García-Berthou E
    Sci Total Environ; 2018 Oct; 639():1138-1147. PubMed ID: 29929282
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland.
    Deo RC; Şahin M
    Environ Monit Assess; 2016 Feb; 188(2):90. PubMed ID: 26780409
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Massive tree mortality from flood pulse disturbances in Amazonian floodplain forests: The collateral effects of hydropower production.
    Resende AF; Schöngart J; Streher AS; Ferreira-Ferreira J; Piedade MTF; Silva TSF
    Sci Total Environ; 2019 Apr; 659():587-598. PubMed ID: 31096388
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of the performance of SWAT and hybrid M5P tree models in rainfall-runoff simulation.
    Kumar S; Pandey KK; Ahirwar A
    J Water Health; 2024 Apr; 22(4):639-651. PubMed ID: 38678419
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of 5-day biochemical oxygen demand in the Buriganga River of Bangladesh using novel hybrid machine learning algorithms.
    Nafsin N; Li J
    Water Environ Res; 2022 May; 94(5):e10718. PubMed ID: 35502725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.