These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35763512)

  • 1. Spatio-temporal transcriptome profiling and subgenome analysis in Brassica napus.
    Wei L; Du H; Li X; Fan Y; Qian M; Li Y; Wang H; Qu C; Qian W; Xu X; Tang Z; Zhang K; Li J; Lu K
    Plant J; 2022 Aug; 111(4):1123-1138. PubMed ID: 35763512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in
    Shahid M; Cai G; Zu F; Zhao Q; Qasim MU; Hong Y; Fan C; Zhou Y
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homoeolog expression bias and expression level dominance in resynthesized allopolyploid Brassica napus.
    Wu J; Lin L; Xu M; Chen P; Liu D; Sun Q; Ran L; Wang Y
    BMC Genomics; 2018 Aug; 19(1):586. PubMed ID: 30081834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation analysis of the transcriptome and metabolome reveals the regulatory network for lipid synthesis in developing Brassica napus embryos.
    Tan H; Zhang J; Qi X; Shi X; Zhou J; Wang X; Xiang X
    Plant Mol Biol; 2019 Jan; 99(1-2):31-44. PubMed ID: 30519824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expression profiling reveals transcription factor networks and subgenome bias during Brassica napus seed development.
    Khan D; Ziegler DJ; Kalichuk JL; Hoi V; Huynh N; Hajihassani A; Parkin IAP; Robinson SJ; Belmonte MF
    Plant J; 2022 Feb; 109(3):477-489. PubMed ID: 34786793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress.
    Liu C; Zhang X; Zhang K; An H; Hu K; Wen J; Shen J; Ma C; Yi B; Tu J; Fu T
    Int J Mol Sci; 2015 Aug; 16(8):18752-77. PubMed ID: 26270661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of heat responsive genes in Brassica napus siliques at the seed-filling stage through transcriptional profiling.
    Yu E; Fan C; Yang Q; Li X; Wan B; Dong Y; Wang X; Zhou Y
    PLoS One; 2014; 9(7):e101914. PubMed ID: 25013950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homoeolog expression bias and expression level dominance (ELD) in four tissues of natural allotetraploid Brassica napus.
    Li M; Wang R; Wu X; Wang J
    BMC Genomics; 2020 Apr; 21(1):330. PubMed ID: 32349676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomic basis of functional difference and coordination between seeds and the silique wall of Brassica napus during the seed-filling stage.
    Liu H; Yang Q; Fan C; Zhao X; Wang X; Zhou Y
    Plant Sci; 2015 Apr; 233():186-199. PubMed ID: 25711826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus.
    Huang KL; Zhang ML; Ma GJ; Wu H; Wu XM; Ren F; Li XB
    PLoS One; 2017; 12(6):e0179027. PubMed ID: 28594951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between phenylpropane metabolism and oil accumulation in the developing seed of Brassica napus revealed by high temporal-resolution transcriptomes.
    Yu L; Liu D; Yin F; Yu P; Lu S; Zhang Y; Zhao H; Lu C; Yao X; Dai C; Yang QY; Guo L
    BMC Biol; 2023 Sep; 21(1):202. PubMed ID: 37775748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The initial deficiency of protein processing and flavonoids biosynthesis were the main mechanisms for the male sterility induced by SX-1 in Brassica napus.
    Ning L; Lin Z; Gu J; Gan L; Li Y; Wang H; Miao L; Zhang L; Wang B; Li M
    BMC Genomics; 2018 Nov; 19(1):806. PubMed ID: 30404610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide characterization, expression analyses, and functional prediction of the NPF family in Brassica napus.
    Wen J; Li PF; Ran F; Guo PC; Zhu JT; Yang J; Zhang LL; Chen P; Li JN; Du H
    BMC Genomics; 2020 Dec; 21(1):871. PubMed ID: 33287703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic identification, characterization and differential expression analysis of SBP-box gene family in Brassica napus.
    Cheng H; Hao M; Wang W; Mei D; Tong C; Wang H; Liu J; Fu L; Hu Q
    BMC Plant Biol; 2016 Sep; 16(1):196. PubMed ID: 27608922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive transcriptome analysis of silique development and dehiscence in Arabidopsis and Brassica integrating genotypic, interspecies and developmental comparisons.
    Jaradat MR; Ruegger M; Bowling A; Butler H; Cutler AJ
    GM Crops Food; 2014; 5(4):302-20. PubMed ID: 25523176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome wide identification and comparative analysis of glutathione transferases (GST) family genes in Brassica napus.
    Wei L; Zhu Y; Liu R; Zhang A; Zhu M; Xu W; Lin A; Lu K; Li J
    Sci Rep; 2019 Jun; 9(1):9196. PubMed ID: 31235772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome analysis of Brassica napus pod using RNA-Seq and identification of lipid-related candidate genes.
    Xu HM; Kong XD; Chen F; Huang JX; Lou XY; Zhao JY
    BMC Genomics; 2015 Oct; 16():858. PubMed ID: 26499887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene expression profiling via LongSAGE in a non-model plant species: a case study in seeds of Brassica napus.
    Obermeier C; Hosseini B; Friedt W; Snowdon R
    BMC Genomics; 2009 Jul; 10():295. PubMed ID: 19575793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying conserved and novel microRNAs in developing seeds of Brassica napus using deep sequencing.
    Körbes AP; Machado RD; Guzman F; Almerão MP; de Oliveira LF; Loss-Morais G; Turchetto-Zolet AC; Cagliari A; dos Santos Maraschin F; Margis-Pinheiro M; Margis R
    PLoS One; 2012; 7(11):e50663. PubMed ID: 23226347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular identification of the phosphate transporter family 1 (PHT1) genes and their expression profiles in response to phosphorus deprivation and other abiotic stresses in Brassica napus.
    Li Y; Wang X; Zhang H; Wang S; Ye X; Shi L; Xu F; Ding G
    PLoS One; 2019; 14(7):e0220374. PubMed ID: 31344115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.