BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35763517)

  • 1. Comparative analysis of dCas9-VP64 variants and multiplexed guide RNAs mediating CRISPR activation.
    Omachi K; Miner JH
    PLoS One; 2022; 17(6):e0270008. PubMed ID: 35763517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit.
    Chapman B; Han JH; Lee HJ; Ruud I; Kim TH
    Genes (Basel); 2023 Apr; 14(4):. PubMed ID: 37107664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems.
    Lowder LG; Zhou J; Zhang Y; Malzahn A; Zhong Z; Hsieh TF; Voytas DF; Zhang Y; Qi Y
    Mol Plant; 2018 Feb; 11(2):245-256. PubMed ID: 29197638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-assisted transcription activation by phase-separation proteins.
    Liu J; Chen Y; Nong B; Luo X; Cui K; Li Z; Zhang P; Tan W; Yang Y; Ma W; Liang P; Songyang Z
    Protein Cell; 2023 Dec; 14(12):874-887. PubMed ID: 36905356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmable activation of Bombyx gene expression using CRISPR/dCas9 fusion systems.
    Wang XG; Ma SY; Chang JS; Shi R; Wang RL; Zhao P; Xia QY
    Insect Sci; 2019 Dec; 26(6):983-990. PubMed ID: 30088341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic Upregulation of Target Genes by TET1 and VP64 in the dCas9-SunTag Platform.
    Morita S; Horii T; Kimura M; Hatada I
    Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32106616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Progress and Future Prospect of CRISPR/Cas-Derived Transcription Activation (CRISPRa) System in Plants.
    Ding X; Yu L; Chen L; Li Y; Zhang J; Sheng H; Ren Z; Li Y; Yu X; Jin S; Cao J
    Cells; 2022 Sep; 11(19):. PubMed ID: 36231007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific Reactivation of Latent HIV-1 by dCas9-SunTag-VP64-mediated Guide RNA Targeting the HIV-1 Promoter.
    Ji H; Jiang Z; Lu P; Ma L; Li C; Pan H; Fu Z; Qu X; Wang P; Deng J; Yang X; Wang J; Zhu H
    Mol Ther; 2016 Mar; 24(3):508-21. PubMed ID: 26775808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional regulation by CRISPR/dCas9 in common wheat.
    Zhou H; Xu L; Li F; Li Y
    Gene; 2022 Jan; 807():145919. PubMed ID: 34454034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplexed Transcriptional Activation or Repression in Plants Using CRISPR-dCas9-Based Systems.
    Lowder LG; Paul JW; Qi Y
    Methods Mol Biol; 2017; 1629():167-184. PubMed ID: 28623586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Comparison between VP64-dCas9-VP64 and dCas9-VP192 CRISPR Activators in Human Embryonic Kidney Cells.
    Javaid N; Pham TLH; Choi S
    Int J Mol Sci; 2021 Jan; 22(1):. PubMed ID: 33401508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-Guided Activation of Pluripotency Genes in Human Fibroblasts.
    Xiong K; Zhou Y; Blichfeld KA; Hyttel P; Bolund L; Freude KK; Luo Y
    Cell Reprogram; 2017 Jun; 19(3):189-198. PubMed ID: 28557624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/dCas9-mediated activation of multiple endogenous target genes directly converts human foreskin fibroblasts into Leydig-like cells.
    Huang H; Zou X; Zhong L; Hou Y; Zhou J; Zhang Z; Xing X; Sun J
    J Cell Mol Med; 2019 Sep; 23(9):6072-6084. PubMed ID: 31264792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vivo Transcriptional Activation Using CRISPR/Cas9 in Drosophila.
    Lin S; Ewen-Campen B; Ni X; Housden BE; Perrimon N
    Genetics; 2015 Oct; 201(2):433-42. PubMed ID: 26245833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bidirectional manipulation of gene expression in adipocytes using CRISPRa and siRNA.
    Lundh M; Pluciñska K; Isidor MS; Petersen PSS; Emanuelli B
    Mol Metab; 2017 Oct; 6(10):1313-1320. PubMed ID: 29031730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potent and Targeted Activation of Latent HIV-1 Using the CRISPR/dCas9 Activator Complex.
    Saayman SM; Lazar DC; Scott TA; Hart JR; Takahashi M; Burnett JC; Planelles V; Morris KV; Weinberg MS
    Mol Ther; 2016 Mar; 24(3):488-98. PubMed ID: 26581162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small-Molecule-Mediated Split-Aptamer Assembly for Inducible CRISPR-dCas9 Transcription Activation.
    Liu XH; Li BR; Ying ZM; Tang LJ; Wang F; Jiang JH
    ACS Chem Biol; 2022 Jul; 17(7):1769-1777. PubMed ID: 35700146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hepatic stellate cell reprogramming via exosome-mediated CRISPR/dCas9-VP64 delivery.
    Luo N; Li J; Chen Y; Xu Y; Wei Y; Lu J; Dong R
    Drug Deliv; 2021 Dec; 28(1):10-18. PubMed ID: 33336604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Mediated Activation of Endogenous Gene Expression in the Postnatal Heart.
    Schoger E; Carroll KJ; Iyer LM; McAnally JR; Tan W; Liu N; Noack C; Shomroni O; Salinas G; Groß J; Herzog N; Doroudgar S; Bassel-Duby R; Zimmermann WH; Zelarayán LC
    Circ Res; 2020 Jan; 126(1):6-24. PubMed ID: 31730408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative and modularized CRISPR/dCas9-dCpf1 dual function system in
    Feng Q; Ning X; Qin L; Li J; Li C
    Front Bioeng Biotechnol; 2023; 11():1218832. PubMed ID: 38026848
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.