These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35763700)

  • 61. Identification of the rate-determining step of tRNA-guanine transglycosylase from Escherichia coli.
    Garcia GA; Chervin SM; Kittendorf JD
    Biochemistry; 2009 Dec; 48(47):11243-51. PubMed ID: 19874048
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Queuosine formation in eukaryotic tRNA occurs via a mitochondria-localized heteromeric transglycosylase.
    Boland C; Hayes P; Santa-Maria I; Nishimura S; Kelly VP
    J Biol Chem; 2009 Jul; 284(27):18218-27. PubMed ID: 19414587
    [TBL] [Abstract][Full Text] [Related]  

  • 63. tRNA-guanine transglycosylase from Escherichia coli: recognition of full-length 'queuine-cognate' tRNAs.
    Kung FL; Garcia GA
    FEBS Lett; 1998 Jul; 431(3):427-32. PubMed ID: 9714557
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Solution-state NMR investigations of triosephosphate isomerase active site loop motion: ligand release in relation to active site loop dynamics.
    Rozovsky S; Jogl G; Tong L; McDermott AE
    J Mol Biol; 2001 Jun; 310(1):271-80. PubMed ID: 11419952
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Use of quantitative (1)H NMR chemical shift changes for ligand docking into barnase.
    Cioffi M; Hunter CA; Packer MJ; Pandya MJ; Williamson MP
    J Biomol NMR; 2009 Jan; 43(1):11-9. PubMed ID: 18979065
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Structural studies of the streptavidin binding loop.
    Freitag S; Le Trong I; Klumb L; Stayton PS; Stenkamp RE
    Protein Sci; 1997 Jun; 6(6):1157-66. PubMed ID: 9194176
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Understanding protein-ligand interactions: the price of protein flexibility.
    Rauh D; Klebe G; Stubbs MT
    J Mol Biol; 2004 Jan; 335(5):1325-41. PubMed ID: 14729347
    [TBL] [Abstract][Full Text] [Related]  

  • 68. tRNA-guanine transglycosylase from Escherichia coli: recognition of dimeric, unmodified tRNA(Tyr).
    Curnow AW; Garcia GA
    Biochimie; 1994; 76(12):1183-91. PubMed ID: 7748954
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Dynamical properties of the loop 320s of substrate-free and substrate-bound muscle creatine kinase by NMR: evidence for independent subunits.
    Rivière G; Hologne M; Marcillat O; Lancelin JM
    FEBS J; 2012 Aug; 279(16):2863-75. PubMed ID: 22715856
    [TBL] [Abstract][Full Text] [Related]  

  • 70. tRNA-guanine transglycosylase from E. coli: a ping-pong kinetic mechanism is consistent with nucleophilic catalysis.
    Goodenough-Lashua DM; Garcia GA
    Bioorg Chem; 2003 Aug; 31(4):331-44. PubMed ID: 12877882
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Crystal structures of Nova-1 and Nova-2 K-homology RNA-binding domains.
    Lewis HA; Chen H; Edo C; Buckanovich RJ; Yang YY; Musunuru K; Zhong R; Darnell RB; Burley SK
    Structure; 1999 Feb; 7(2):191-203. PubMed ID: 10368286
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Low-density crystal packing of human protein kinase CK2 catalytic subunit in complex with resorufin or other ligands: a tool to study the unique hinge-region plasticity of the enzyme without packing bias.
    Klopffleisch K; Issinger OG; Niefind K
    Acta Crystallogr D Biol Crystallogr; 2012 Aug; 68(Pt 8):883-92. PubMed ID: 22868753
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Involvement of protein kinase C in the control of tRNA modification with queuine in HeLa cells.
    Langgut W; Reisser T
    Nucleic Acids Res; 1995 Jul; 23(13):2488-91. PubMed ID: 7630726
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Triosephosphate isomerase: 15N and 13C chemical shift assignments and conformational change upon ligand binding by magic-angle spinning solid-state NMR spectroscopy.
    Xu Y; Lorieau J; McDermott AE
    J Mol Biol; 2010 Mar; 397(1):233-48. PubMed ID: 19854202
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Enzyme inhibition by allosteric capture of an inactive conformation.
    Lee GM; Shahian T; Baharuddin A; Gable JE; Craik CS
    J Mol Biol; 2011 Sep; 411(5):999-1016. PubMed ID: 21723875
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The 2.0 A structure of malarial purine phosphoribosyltransferase in complex with a transition-state analogue inhibitor.
    Shi W; Li CM; Tyler PC; Furneaux RH; Cahill SM; Girvin ME; Grubmeyer C; Schramm VL; Almo SC
    Biochemistry; 1999 Aug; 38(31):9872-80. PubMed ID: 10433693
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Probing contacts of inhibitor locked in transition states in the catalytic triad of DENV2 type serine protease and its mutants by 1H, 19F and 15 N NMR spectroscopy.
    Agback P; Woestenenk E; Agback T
    BMC Mol Cell Biol; 2020 May; 21(1):38. PubMed ID: 32450796
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases.
    Chen YC; Brooks AF; Goodenough-Lashua DM; Kittendorf JD; Showalter HD; Garcia GA
    Nucleic Acids Res; 2011 Apr; 39(7):2834-44. PubMed ID: 21131277
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A Switch between Two Intrinsically Disordered Conformational Ensembles Modulates the Active Site of a Basic-Helix-Loop-Helix Transcription Factor.
    Sicoli G; Kress T; Vezin H; Ledolter K; Kurzbach D
    J Phys Chem Lett; 2020 Nov; 11(21):8944-8951. PubMed ID: 33030907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.