These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35763885)

  • 1. Interaction of three-dimensional acoustic beam with fluid-loaded solid plate: Axial near- to far-field transmission at normal beam incidence.
    Sæther MM; Midtbø SH; Lunde P
    Ultrasonics; 2022 Sep; 125():106795. PubMed ID: 35763885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beam Diffraction Effects in the Backward Wave Regions of Viscoelastic Leaky Lamb Modes for Plate Transmission at Normal Incidence.
    Aanes M; Lohne KD; Lunde P; Vestrheim M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Oct; 64(10):1558-1572. PubMed ID: 28650809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ASM and finite beam description of the excited leaky Lamb wave fields in a fluid-immersed plate.
    Midtbø SH; Aanes M; Talberg AS; Måsøy SE
    Ultrasonics; 2023 Jan; 127():106845. PubMed ID: 36162286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The higher order leaky Lamb wave sensitivity of a notch in a fluid-immersed plate.
    Midtbø SH; Måsøy SE; Aanes M
    Ultrasonics; 2024 Mar; 138():107215. PubMed ID: 38103353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beam diffraction effects in sound transmission of a fluid-embedded viscoelastic plate at normal incidence.
    Aanes M; Lohne KD; Lunde P; Vestrheim M
    J Acoust Soc Am; 2016 Jul; 140(1):EL67. PubMed ID: 27475214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Backward waves and energy fluxes excited in acoustic medium with an immersed plate.
    Glushkov EV; Glushkova NV; Miakisheva OA
    Ultrasonics; 2019 Apr; 94():158-168. PubMed ID: 30327130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of air gap reflections during air-coupled leaky Lamb wave inspection of thin plates.
    Fan Z; Jiang W; Cai M; Wright WM
    Ultrasonics; 2016 Feb; 65():282-95. PubMed ID: 26464105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Air-coupled ultrasonic through-transmission thickness measurements of steel plates.
    Waag G; Hoff L; Norli P
    Ultrasonics; 2015 Feb; 56():332-9. PubMed ID: 25257299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Propagation of Lamb waves in an immersed periodically grooved plate: experimental detection of the scattered converted backward waves.
    Harhad N; El-Kettani ME; Djelouah H; Izbicki JL; Predoi MV
    Ultrasonics; 2014 Mar; 54(3):860-6. PubMed ID: 24262677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective Generation of Lamb Wave Modes in a Finite-Width Plate by Angle-Beam Excitation Method.
    Park SJ; Joo YS; Kim HW; Kim SK
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32664426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unusual energy properties of leaky backward Lamb waves in a submerged plate.
    Nedospasov IA; Mozhaev VG; Kuznetsova IE
    Ultrasonics; 2017 May; 77():95-99. PubMed ID: 28213147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental observation on a frequency spectrum of a plate mode of a predominantly leaky nature.
    Durinck G; Thys W; Rembert P; Izbicki JL
    Ultrasonics; 1999 Jun; 37(5):373-6. PubMed ID: 10499808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental study of ultrasonic beam sectors for energy conversion into Lamb waves and Rayleigh waves.
    Declercq NF
    Ultrasonics; 2014 Feb; 54(2):609-13. PubMed ID: 24079915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and Computational Investigation of Guided Waves in a Human Skull.
    Sugino C; Ruzzene M; Erturk A
    Ultrasound Med Biol; 2021 Mar; 47(3):787-798. PubMed ID: 33358510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of bone assessment with leaky Lamb waves in bone phantoms and a bovine tibia.
    Lee KI; Yoon SW
    J Acoust Soc Am; 2004 Jun; 115(6):3210-7. PubMed ID: 15237845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double-layer PVDF transducer and V(z) measurement system for measuring leaky Lamb waves in a piezoelectric plate.
    Lee YC; Kuo SH
    Ultrasonics; 2007 Mar; 46(1):25-33. PubMed ID: 17113617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transmission analysis of ultrasonic Lamb mode conversion in a plate with partial-thickness notch.
    Xu K; Ta D; Su Z; Wang W
    Ultrasonics; 2014 Jan; 54(1):395-401. PubMed ID: 23916666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation Characteristics of Cranial Leaky Lamb Waves.
    Mazzotti M; Kohtanen E; Erturk A; Ruzzene M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jun; 68(6):2129-2140. PubMed ID: 33544671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-modal leaky Lamb waves in two parallel and immersed plates: Theoretical considerations, simulations, and measurements.
    Kauffmann P; Ploix MA; Chaix JF; Potel C; Gueudre C; Corneloup G; Baque F
    J Acoust Soc Am; 2019 Feb; 145(2):1018. PubMed ID: 30823781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative reflection of Lamb waves at a free edge: Tunable focusing and mimicking phase conjugation.
    Gérardin B; Laurent J; Prada C; Aubry A
    J Acoust Soc Am; 2016 Jul; 140(1):591. PubMed ID: 27475181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.