These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 35763895)
1. Highly bioactive bone cement microspheres based on α-tricalcium phosphate microparticles/mesoporous bioactive glass nanoparticles: Formulation, physico-chemical characterization and in vivo bone regeneration. El-Fiqi A; Kim JH; Kim HW Colloids Surf B Biointerfaces; 2022 Sep; 217():112650. PubMed ID: 35763895 [TBL] [Abstract][Full Text] [Related]
2. Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration. Meng D; Dong L; Wen Y; Xie Q Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():266-72. PubMed ID: 25492197 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of chitosan/beta-tricalcium phosphate microspheres as a constituent to PMMA cement. Lin LC; Chang SJ; Kuo SM; Chen SF; Kuo CH J Mater Sci Mater Med; 2005 Jun; 16(6):567-74. PubMed ID: 15928873 [TBL] [Abstract][Full Text] [Related]
5. [Animal implantation with a new type of chitosan microspheres/calcium phosphate cement]. Meng D; Xie QF Beijing Da Xue Xue Bao Yi Xue Ban; 2009 Feb; 41(1):80-5. PubMed ID: 19221571 [TBL] [Abstract][Full Text] [Related]
6. Bactericidal and Bioresorbable Calcium Phosphate Cements Fabricated by Silver-Containing Tricalcium Phosphate Microspheres. Honda M; Kawanobe Y; Nagata K; Ishii K; Matsumoto M; Aizawa M Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32466460 [TBL] [Abstract][Full Text] [Related]
7. Injectable β-TCP/MCPM cement associated with mesoporous silica for bone regeneration: characterization and toxicity evaluation. Mendes LS; Saska S; Coelho F; Capote TSO; Scarel-Caminaga RM; Marchetto R; Carrodeguas RG; Gaspar AMM; Rodríguez MA Biomed Mater; 2018 Feb; 13(2):025023. PubMed ID: 28972203 [TBL] [Abstract][Full Text] [Related]
8. A novel injectable calcium phosphate cement-bioactive glass composite for bone regeneration. Yu L; Li Y; Zhao K; Tang Y; Cheng Z; Chen J; Zang Y; Wu J; Kong L; Liu S; Lei W; Wu Z PLoS One; 2013; 8(4):e62570. PubMed ID: 23638115 [TBL] [Abstract][Full Text] [Related]
9. Nanocements produced from mesoporous bioactive glass nanoparticles. Kang MS; Lee NH; Singh RK; Mandakhbayar N; Perez RA; Lee JH; Kim HW Biomaterials; 2018 Apr; 162():183-199. PubMed ID: 29448144 [TBL] [Abstract][Full Text] [Related]
10. Comparison of amorphous TCP nanoparticles to micron-sized alpha-TCP as starting materials for calcium phosphate cements. Brunner TJ; Bohner M; Dora C; Gerber C; Stark WJ J Biomed Mater Res B Appl Biomater; 2007 Nov; 83(2):400-7. PubMed ID: 17410573 [TBL] [Abstract][Full Text] [Related]
11. Novel bioactive composite bone cements based on the beta-tricalcium phosphate-monocalcium phosphate monohydrate composite cement system. Huan Z; Chang J Acta Biomater; 2009 May; 5(4):1253-64. PubMed ID: 18996779 [TBL] [Abstract][Full Text] [Related]
12. Preparation of bioactive β-tricalcium phosphate microspheres as bone graft substitute materials. Li B; Liu Z; Yang J; Yi Z; Xiao W; Liu X; Yang X; Xu W; Liao X Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1200-1205. PubMed ID: 27772722 [TBL] [Abstract][Full Text] [Related]
13. Apatite formation on bioactive calcium-silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation. Gandolfi MG; Ciapetti G; Taddei P; Perut F; Tinti A; Cardoso MV; Van Meerbeek B; Prati C Dent Mater; 2010 Oct; 26(10):974-92. PubMed ID: 20655582 [TBL] [Abstract][Full Text] [Related]
14. Development of beta-tricalcium phosphate/sol-gel derived bioactive glass composites: physical, mechanical, and in vitro biological evaluations. Hesaraki S; Safari M; Shokrgozar MA J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):459-69. PubMed ID: 19507141 [TBL] [Abstract][Full Text] [Related]
15. Composition control in biphasic silicate microspheres on stimulating new bone regeneration and repair of osteoporotic femoral bone defect. Ghamor-Amegavi EP; Yang X; Qiu J; Xie L; Pan Z; Wang J; Zhang X; Ke X; Zhao T; Zhang L; Gou Z J Biomed Mater Res B Appl Biomater; 2020 Feb; 108(2):377-390. PubMed ID: 31037822 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. Rojbani H; Nyan M; Ohya K; Kasugai S J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941 [TBL] [Abstract][Full Text] [Related]
17. Development of injectable chitosan/biphasic calcium phosphate bone cement and in vitro and in vivo evaluation. Rattanachan ST; Srakaew NL; Thaitalay P; Thongsri O; Dangviriyakul R; Srisuwan S; Suksaweang S; Widelitz RB; Chuong CM; Srithunyarat T; Kampa N; Kaenkangploo D; Hoisang S; Jittimanee S; Wipoosak P; Kamlangchai P; Yongvanit K; Tuchpramuk P Biomed Mater; 2020 Sep; 15(5):055038. PubMed ID: 32217815 [TBL] [Abstract][Full Text] [Related]
18. Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect. Tang W; Lin D; Yu Y; Niu H; Guo H; Yuan Y; Liu C Acta Biomater; 2016 Mar; 32():309-323. PubMed ID: 26689464 [TBL] [Abstract][Full Text] [Related]
19. In vivo evaluation of injectable calcium phosphate cement composed of Zn- and Si-incorporated β-tricalcium phosphate and monocalcium phosphate monohydrate for a critical sized defect of the rabbit femoral condyle. Paul K; Lee BY; Abueva C; Kim B; Choi HJ; Bae SH; Lee BT J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):260-271. PubMed ID: 26478465 [TBL] [Abstract][Full Text] [Related]
20. Trivalent chromium incorporated in a crystalline calcium phosphate matrix accelerates materials degradation and bone formation in vivo. Rentsch B; Bernhardt A; Henß A; Ray S; Rentsch C; Schamel M; Gbureck U; Gelinsky M; Rammelt S; Lode A Acta Biomater; 2018 Mar; 69():332-341. PubMed ID: 29355718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]