BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 35763927)

  • 1. Prediction of oil content in single maize kernel based on hyperspectral imaging and attention convolution neural network.
    Zhang L; An D; Wei Y; Liu J; Wu J
    Food Chem; 2022 Nov; 395():133563. PubMed ID: 35763927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared hyperspectral imaging technology combined with deep convolutional generative adversarial network to predict oil content of single maize kernel.
    Zhang L; Wang Y; Wei Y; An D
    Food Chem; 2022 Feb; 370():131047. PubMed ID: 34626928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of long-wave near infrared hyperspectral imaging for determination of moisture content of single maize seed.
    Wang Z; Fan S; Wu J; Zhang C; Xu F; Yang X; Li J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jun; 254():119666. PubMed ID: 33744703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Measuring the Moisture Content in Maize Kernel Based on Hyperspctral Image of Embryo Region].
    Tian X; Huang WQ; Li JB; Fan SX; Zhang BH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Oct; 36(10):3237-42. PubMed ID: 30246759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of hardness for maize kernels based on hyperspectral imaging.
    Qiao M; Xu Y; Xia G; Su Y; Lu B; Gao X; Fan H
    Food Chem; 2022 Jan; 366():130559. PubMed ID: 34289440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of textural and spectral features of Raman hyperspectral imaging for quantitative determination of a single maize kernel mildew coupled with chemometrics.
    Long Y; Huang W; Wang Q; Fan S; Tian X
    Food Chem; 2022 Mar; 372():131246. PubMed ID: 34818727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-field and non-destructive determination of comprehensive maturity index and maturity stages of Camellia oleifera fruits using a portable hyperspectral imager.
    Yuan W; Zhou H; Zhou Y; Zhang C; Jiang X; Jiang H
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jul; 315():124266. PubMed ID: 38599024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-destructive detection of defective maize kernels using hyperspectral imaging and convolutional neural network with attention module.
    Yang D; Zhou Y; Jie Y; Li Q; Shi T
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 May; 313():124166. PubMed ID: 38493512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel high-throughput hyperspectral scanner and analytical methods for predicting maize kernel composition and physical traits.
    Varela JI; Miller ND; Infante V; Kaeppler SM; de Leon N; Spalding EP
    Food Chem; 2022 Oct; 391():133264. PubMed ID: 35643019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-task convolutional neural network for simultaneous monitoring of lipid and protein oxidative damage in frozen-thawed pork using hyperspectral imaging.
    Cheng J; Sun J; Yao K; Xu M; Dai C
    Meat Sci; 2023 Jul; 201():109196. PubMed ID: 37087873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of Aflatoxin B1 Concentration of Single Maize Kernel Based on Near-Infrared Hyperspectral Imaging and Feature Selection.
    Zhou Q; Huang W; Liang D; Tian X
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of metmyoglobin in cooked tan mutton using Vis/NIR hyperspectral imaging system.
    Yuan R; Liu G; He J; Ma C; Cheng L; Fan N; Ban J; Li Y; Sun Y
    J Food Sci; 2020 May; 85(5):1403-1410. PubMed ID: 32304238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of fumonisin content in maize using near-infrared hyperspectral imaging (NIR-HSI) technology and chemometric methods.
    Conceição RRP; Queiroz VAV; Medeiros EP; Araújo JB; Araújo DDS; Miguel RA; Stoianoff MAR; Simeone MLF
    Braz J Biol; 2024; 84():e277974. PubMed ID: 38808784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-infrared hyperspectral imaging for detection and visualization of offal adulteration in ground pork.
    Jiang H; Ru Y; Chen Q; Wang J; Xu L
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 249():119307. PubMed ID: 33348095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study on the Rapid Evaluation of Total Volatile Basic Nitrogen (TVB-N) of Mutton by Hyperspectral Imaging Technique].
    Zhu RG; Yao XD; Duan HW; Ma BX; Tang MX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Mar; 36(3):806-10. PubMed ID: 27400528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards the non-invasive assessment of staling in bovine hides with hyperspectral imaging.
    Liu Y; Dixit Y; Reis MM; Prabakar S
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Mar; 289():122220. PubMed ID: 36516590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential of hyperspectral imaging for rapid prediction of hydroxyproline content in chicken meat.
    Xiong Z; Sun DW; Xie A; Han Z; Wang L
    Food Chem; 2015 May; 175():417-22. PubMed ID: 25577100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein content prediction in single wheat kernels using hyperspectral imaging.
    Caporaso N; Whitworth MB; Fisk ID
    Food Chem; 2018 Feb; 240():32-42. PubMed ID: 28946278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using an optimal CC-PLSR-RBFNN model and NIR spectroscopy for the starch content determination in corn.
    Jiang H; Lu J
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 196():131-140. PubMed ID: 29444495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of Aqueous Glucose Concentration Using Hyperspectral Imaging.
    Wang CY; Hevaganinge A; Wang D; Ali M; Cattaneo M; Tao Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3237-3240. PubMed ID: 34891931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.