These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35764004)

  • 1. Analysis of coal ash samples from thermal power plants of India for their gallium content using NAA and EDXRF techniques.
    Chand M; Ashok Kumar GVS; Senthilvadivu R; Usha Lakshmi K; Serajuddin M; Ramadevi G; Kumar R
    Appl Radiat Isot; 2022 Sep; 187():110336. PubMed ID: 35764004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of various mathematical functions for the in-situ relative detector efficiency towards its applicability for k
    Chand M; Rao JSB; Samanta SK; Shekhawat RS; Senthilvadivu R; Kumar GVSA; R K
    Appl Radiat Isot; 2022 Jun; 184():110194. PubMed ID: 35316780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enrichment and particle size dependence of polonium and other naturally occurring radionuclides in coal ash.
    Sahu SK; Tiwari M; Bhangare RC; Pandit GG
    J Environ Radioact; 2014 Dec; 138():421-6. PubMed ID: 24813148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potentially toxic elements in lignite and its combustion residues from a power plant.
    Ram LC; Masto RE; Srivastava NK; George J; Selvi VA; Das TB; Pal SK; Maity S; Mohanty D
    Environ Monit Assess; 2015 Jan; 187(1):4148. PubMed ID: 25446718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavior study of trace elements in pulverized lignite, bottom ash, and fly ash of Amyntaio power station, Greece.
    Megalovasilis P; Papastergios G; Filippidis A
    Environ Monit Assess; 2013 Jul; 185(7):6071-6. PubMed ID: 23188071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury emissions and partitioning from Indian coal-fired power plants.
    Agarwalla H; Senapati RN; Das TB
    J Environ Sci (China); 2021 Feb; 100():28-33. PubMed ID: 33279041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Naturally occurring radioactive materials (NORMs) generated from lignite-fired power plants in Kosovo.
    Hasani F; Shala F; Xhixha G; Xhixha MK; Hodolli G; Kadiri S; Bylyku E; Cfarku F
    J Environ Radioact; 2014 Dec; 138():156-61. PubMed ID: 25233215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of Lead Elemental Concentration and Isotopic Ratios in Coal Ash and Coal Fly Ash Reference Materials Using Isotope Dilution Thermal Ionization Mass Spectrometry.
    Li C; Wu H; Wang X; Chu Z; Li Y; Guo J
    Int J Environ Res Public Health; 2019 Nov; 16(23):. PubMed ID: 31795164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. STUDY OF RADON, THORON EXHALATION AND NATURAL RADIOACTIVITY IN COAL AND FLY ASH SAMPLES OF KOTA SUPER THERMAL POWER PLANT, RAJASTHAN, INDIA.
    Singh LM; Kumar M; Sahoo BK; Sapra BK; Kumar R
    Radiat Prot Dosimetry; 2016 Oct; 171(2):196-199. PubMed ID: 27026746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enrichment of naturally occurring radionuclides and trace elements in Yatagan and Yenikoy coal-fired thermal power plants, Turkey.
    Ozden B; Guler E; Vaasma T; Horvath M; Kiisk M; Kovacs T
    J Environ Radioact; 2018 Aug; 188():100-107. PubMed ID: 28965987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): an introduction of occupational health hazards.
    Oliveira ML; Marostega F; Taffarel SR; Saikia BK; Waanders FB; DaBoit K; Baruah BP; Silva LF
    Sci Total Environ; 2014 Jan; 468-469():1128-37. PubMed ID: 24121564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the leaching behavior of elements from coal combustion residues for better management.
    Kumar A; Samadder SR
    Environ Monit Assess; 2015 Jun; 187(6):370. PubMed ID: 26002341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological and biochemical changes in Azadirachta indica from coal combustion fly ash dumping site from a thermal power plant in Delhi, India.
    Qadir SU; Raja V; Siddiqui WA
    Ecotoxicol Environ Saf; 2016 Jul; 129():320-8. PubMed ID: 27077968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rock magnetic finger-printing of soil from a coal-fired thermal power plant.
    Gune M; Harshavardhana BG; Balakrishna K; Udayashankar HN; Shankar R; Manjunatha BR
    Environ Monit Assess; 2016 May; 188(5):272. PubMed ID: 27056477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury in Indian Thermal Coals.
    Das TB; Senapati RN; Agarwalla H
    Bull Environ Contam Toxicol; 2020 Sep; 105(3):502-512. PubMed ID: 32728825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on particle radiative properties of lignite, hard coal and biomass fly ashes in the infrared wavelength range.
    Doner N; Topal H; Aygahoglu A; Sen F; Karimi-Maleh H
    Chemosphere; 2022 Mar; 291(Pt 1):132719. PubMed ID: 34743797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anthropogenic arsenic menace in contaminated water near thermal power plants and coal mining areas of India.
    Dubey CS; Usham AL; Mishra BK; Shukla DP; Singh PK; Singh AK
    Environ Geochem Health; 2022 Mar; 44(3):1099-1127. PubMed ID: 34173907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies.
    Mokhtar MM; Taib RM; Hassim MH
    J Air Waste Manag Assoc; 2014 Aug; 64(8):867-78. PubMed ID: 25185389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of combustibles from electrostatic precipitator discharge.
    Jain PK; Bhattacharya S; Kumar S
    Waste Manag Res; 2016 Jun; 34(6):542-52. PubMed ID: 27053376
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Walencik-Łata A; Smołka-Danielowska D
    Environ Pollut; 2020 Dec; 267():115462. PubMed ID: 32891046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.