These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35764007)

  • 1. Determination of the radiological properties of materials: A new approximation method for calculation of the mass attenuation coefficients.
    Kaşkaş A; Şahmaran T
    Appl Radiat Isot; 2022 Sep; 187():110340. PubMed ID: 35764007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the use of external aluminium targets for portal imaging in a medical accelerator using Geant4 Monte Carlo simulation.
    Kim H; Kim B; Baek J; Oh Y; Yun S; Jang H
    Br J Radiol; 2018 Apr; 91(1084):20170376. PubMed ID: 29338304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dosimetric properties of a Solid Water High Equivalency (SW557) phantom for megavoltage photon beams.
    Araki F
    Phys Med; 2017 Jul; 39():132-136. PubMed ID: 28662851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A photon source model based on particle transport in a parameterized accelerator structure for Monte Carlo dose calculations.
    Ishizawa Y; Dobashi S; Kadoya N; Ito K; Chiba T; Takayama Y; Sato K; Takeda K
    Med Phys; 2018 Jul; 45(7):2937-2946. PubMed ID: 29772081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water equivalent phantom materials for ¹⁹²Ir brachytherapy.
    Schoenfeld AA; Harder D; Poppe B; Chofor N
    Phys Med Biol; 2015 Dec; 60(24):9403-20. PubMed ID: 26579946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of RW3-to-water mass-energy absorption coefficient ratio for absolute dosimetry.
    Seet KY; Hanlon PM; Charles PH
    Australas Phys Eng Sci Med; 2011 Dec; 34(4):553-8. PubMed ID: 21960410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Nylon-12 as a water-equivalent solid phantom material for dosimetric measurements in therapeutic photon and electron beams.
    Ade N; van Eeden D; du Plessis FCP
    Appl Radiat Isot; 2020 Jan; 155():108919. PubMed ID: 31622845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a commercial MRI Linac based Monte Carlo dose calculation algorithm with GEANT4.
    Ahmad SB; Sarfehnia A; Paudel MR; Kim A; Hissoiny S; Sahgal A; Keller B
    Med Phys; 2016 Feb; 43(2):894-907. PubMed ID: 26843250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microdosimetric study on influence of low energy photons on relative biological effectiveness under therapeutic conditions using 6 MV linac.
    Okamoto H; Kohno T; Kanai T; Kase Y; Matsumoto Y; Furusawa Y; Fujita Y; Saitoh H; Itami J
    Med Phys; 2011 Aug; 38(8):4714-22. PubMed ID: 21928645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue composition effect on dose distribution in radiotherapy with a 6 MV photon beam of a medical linac.
    Ghorbani M; Noghreiyan AV; Tabatabaei ZS; Pakravan D; Davenport D
    J Cancer Res Ther; 2019; 15(1):237-244. PubMed ID: 30880784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of 10 MV x-ray spectra emitted by a medical linear accelerator using the BFGS quasi-Newton method.
    Shimozato T; Tabushi K; Kitoh S; Shiota Y; Hirayama C; Suzuki S
    Phys Med Biol; 2007 Jan; 52(2):515-23. PubMed ID: 17202630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time, ray casting-based scatter dose estimation for c-arm x-ray system.
    Alnewaini Z; Langer E; Schaber P; David M; Kretz D; Steil V; Hesser J
    J Appl Clin Med Phys; 2017 Mar; 18(2):144-153. PubMed ID: 28300387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technical note: Influence of the phantom material on the absorbed-dose energy dependence of the EBT3 radiochromic film for photons in the energy range 3 keV-18 MeV.
    Hermida-López M; Lüdemann L; Flühs A; Brualla L
    Med Phys; 2014 Nov; 41(11):112103. PubMed ID: 25370654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical characterization of single convergent beam device for teletherapy: theoretical and Monte Carlo approach.
    Figueroa RG; Valente M
    Phys Med Biol; 2015 Sep; 60(18):7191-206. PubMed ID: 26348025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining the incident electron fluence for Monte Carlo-based photon treatment planning using a standard measured data set.
    Keall PJ; Siebers JV; Libby B; Mohan R
    Med Phys; 2003 Apr; 30(4):574-82. PubMed ID: 12722809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Out-of-field mean photon energy and dose from 6 MV and 6 MV FFF beams measured with TLD-300 and TLD-100 dosimeters.
    López-Guadalupe VM; Rodríguez-Laguna A; Poitevin-Chacón MA; López-Pineda E; Brandan ME
    Med Phys; 2021 Nov; 48(11):6567-6577. PubMed ID: 34528262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the KQclinfclin,Qmsr fmsr correction factors for detectors used with an 800 MU/min CyberKnife(®) system equipped with fixed collimators and a study of detector response to small photon beams using a Monte Carlo method.
    Moignier C; Huet C; Makovicka L
    Med Phys; 2014 Jul; 41(7):071702. PubMed ID: 24989371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.
    Chibani O; Ma CM
    Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining the energy spectrum of clinical linear accelerator using an optimized photon beam transmission protocol.
    Choi HJ; Park H; Yi CY; Kim BC; Shin WG; Min CH
    Med Phys; 2019 Jul; 46(7):3285-3297. PubMed ID: 31055830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-energy photons in high-energy photon fields--Monte Carlo generated spectra and a new descriptive parameter.
    Chofor N; Harder D; Willborn K; Rühmann A; Poppe B
    Z Med Phys; 2011 Sep; 21(3):183-97. PubMed ID: 21530198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.