These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35764150)

  • 41. Thermogravimetric analysis of the co-combustion of coal and polyvinyl chloride.
    Gao H; Li J
    PLoS One; 2019; 14(10):e0224401. PubMed ID: 31658292
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combustion in the future: The importance of chemistry.
    Kohse-Höinghaus K
    Proc Combust Inst; 2020 Sep; ():. PubMed ID: 33013234
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of lignin on coal gangue pyrolysis and gas emission based on multi-lump parallel reaction model and principal component analysis.
    Bi H; Ni Z; Tian J; Jiang C; Sun H; Lin Q
    Sci Total Environ; 2022 May; 820():153083. PubMed ID: 35033567
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The emissions from co-firing of biomass and torrefied biomass with coal in a chain-grate steam boiler.
    Chang CC; Chen YH; Chang WR; Wu CH; Chen YH; Chang CY; Yuan MH; Shie JL; Li YS; Chiang SW; Yang TY; Lin FC; Ko CH; Liu BL; Liu KW; Wang SG
    J Air Waste Manag Assoc; 2019 Dec; 69(12):1467-1478. PubMed ID: 31524083
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Adsorption mechanism of furfural onto modified rice husk charcoals].
    Deng Y; Wang X; Li Y; Shao J; Yang H; Chen H
    Sheng Wu Gong Cheng Xue Bao; 2015 Oct; 31(10):1492-500. PubMed ID: 26964338
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Combustion characteristics of coal and refuse from passenger trains.
    Fu-min R; Feng Y; Ming G; Min Y
    Waste Manag; 2010 Jul; 30(7):1196-205. PubMed ID: 20093000
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Environmental impact of co-combustion of polyethylene wastes in a rice husks fueled plant: Evaluation of organic micropollutants and PM emissions.
    Colapicchioni V; Mosca S; Guerriero E; Cerasa M; Khalid A; Perilli M; Rotatori M
    Sci Total Environ; 2020 May; 716():135354. PubMed ID: 31839322
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimizing co-combustion synergy of soil remediation biomass and pulverized coal toward energetic and gas-to-ash pollution controls.
    Chen Z; Chen Z; Liu J; Zhuang P; Evrendilek F; Huang S; Chen T; Xie W; He Y; Sun S
    Sci Total Environ; 2023 Jan; 857(Pt 3):159585. PubMed ID: 36272484
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Investigation of co-combustion characteristics of sewage sludge and coffee grounds mixtures using thermogravimetric analysis coupled to artificial neural networks modeling.
    Chen J; Liu J; He Y; Huang L; Sun S; Sun J; Chang K; Kuo J; Huang S; Ning X
    Bioresour Technol; 2017 Feb; 225():234-245. PubMed ID: 27894042
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Facile catalytic combustion of rice husk and burning temperature dependence of the ashes.
    Xiong L; Sekiya EH; Wada S; Saito K
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2509-18. PubMed ID: 20356121
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigation of thermal conversion characteristics and performance evaluation of co-combustion of pine sawdust and lignite coal using TGA, artificial neural network modeling and likelihood method.
    Buyukada M
    Bioresour Technol; 2019 Sep; 287():121461. PubMed ID: 31121444
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impact of blend ratio on the co-firing of a commercial torrefied biomass and coal via analysis of oxidation kinetics.
    Goldfarb JL; Liu C
    Bioresour Technol; 2013 Dec; 149():208-15. PubMed ID: 24113546
    [TBL] [Abstract][Full Text] [Related]  

  • 53. N migration and transformation during the co-combustion of sewage sludge and coal slime.
    Wang Y; Jia L; Guo B; Wang B; Zhang L; Zheng X; Xiang J; Jin Y
    Waste Manag; 2022 May; 145():83-91. PubMed ID: 35525001
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of combustion properties and pollutant emission characteristics of blends of sewage sludge and biomass.
    Wang Y; Liu Y; Yang W; Zhao Q; Dai Y
    Sci Total Environ; 2020 Jun; 720():137365. PubMed ID: 32325553
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Investigation of (co)-combustion kinetics of biomass, coal and municipal solid wastes.
    Boumanchar I; Chhiti Y; M'hamdi Alaoui FE; Elkhouakhi M; Sahibed-Dine A; Bentiss F; Jama C; Bensitel M
    Waste Manag; 2019 Sep; 97():10-18. PubMed ID: 31447016
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA.
    Chen C; Ma X; He Y
    Bioresour Technol; 2012 Aug; 117():264-73. PubMed ID: 22617036
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.
    Gao Y; Tahmasebi A; Dou J; Yu J
    Bioresour Technol; 2016 May; 207():276-84. PubMed ID: 26894568
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Investigation on the co-combustion characteristics of multiple biomass and coal under O
    Yi B; Chen M; Gao Y; Cao C; Wei Q; Zhang Z; Li L
    J Environ Manage; 2023 Jan; 325(Pt A):116498. PubMed ID: 36265234
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pretreatment of biomass by torrefaction and carbonization for coal blend used in pulverized coal injection.
    Du SW; Chen WH; Lucas JA
    Bioresour Technol; 2014 Jun; 161():333-9. PubMed ID: 24727692
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Combustion characteristics and retention-emission of selenium during co-firing of torrefied biomass and its blends with high ash coal.
    Ullah H; Liu G; Yousaf B; Ali MU; Abbas Q; Zhou C
    Bioresour Technol; 2017 Dec; 245(Pt A):73-80. PubMed ID: 28892708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.