These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35764277)

  • 1. Pristine and manganese ferrite modified biochars for copper ion adsorption: Type-wide comparison.
    Huang WH; Wu RM; Chang JS; Juang SY; Lee DJ
    Bioresour Technol; 2022 Sep; 360():127529. PubMed ID: 35764277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manganese ferrite modified agricultural waste-derived biochars for copper ions adsorption.
    Huang WH; Wu RM; Chang JS; Juang SY; Lee DJ
    Bioresour Technol; 2023 Jan; 367():128303. PubMed ID: 36368488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of phosphate onto agricultural waste biochars with ferrite/manganese modified-ball-milled treatment and its reuse in saline soil.
    Che N; Qu J; Wang J; Liu N; Li C; Liu Y
    Sci Total Environ; 2024 Mar; 915():169841. PubMed ID: 38215841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars.
    Peng H; Gao P; Chu G; Pan B; Peng J; Xing B
    Environ Pollut; 2017 Oct; 229():846-853. PubMed ID: 28779896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions.
    Jiang S; Huang L; Nguyen TA; Ok YS; Rudolph V; Yang H; Zhang D
    Chemosphere; 2016 Jan; 142():64-71. PubMed ID: 26206747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient removal of volatile organic compound by ball-milled biochars from different preparing conditions.
    Zhuang Z; Wang L; Tang J
    J Hazard Mater; 2021 Mar; 406():124676. PubMed ID: 33310330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing magnetic functionalization conditions for efficient preparation of magnetic biochar and adsorption of Pb(II) from aqueous solution.
    Dong J; Shen L; Shan S; Liu W; Qi Z; Liu C; Gao X
    Sci Total Environ; 2022 Feb; 806(Pt 4):151442. PubMed ID: 34742966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of nickel adsorption on biochars produced from mixed softwood and Miscanthus straw.
    Shen Z; Zhang Y; Jin F; Alessi DS; Zhang Y; Wang F; McMillan O; Al-Tabbaa A
    Environ Sci Pollut Res Int; 2018 May; 25(15):14626-14635. PubMed ID: 29532375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile one-pot hydrothermal synthesis of cubic spinel-type manganese ferrite/biochar composites for environmental remediation of heavy metals from aqueous solutions.
    Jung KW; Lee SY; Lee YJ
    Bioresour Technol; 2018 Aug; 261():1-9. PubMed ID: 29635102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the efficiency of magnetically modified biomass-derived biochar for effective phosphate removal.
    Ajmal Z; Muhmood A; Dong R; Wu S
    J Environ Manage; 2020 Jan; 253():109730. PubMed ID: 31665689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of Cd(II) adsorption by rice straw biochar through oxidant and acid modifications.
    He X; Hong ZN; Jiang J; Dong G; Liu H; Xu RK
    Environ Sci Pollut Res Int; 2021 Aug; 28(31):42787-42797. PubMed ID: 33825103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of oxidation-induced aging on the adsorption and co-adsorption of tetracycline and Cu
    Nie T; Hao P; Zhao Z; Zhou W; Zhu L
    Sci Total Environ; 2019 Jul; 673():522-532. PubMed ID: 30995586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of biochars derived from various spent mushroom substrates and evaluation of their adsorption performance of Cu(II) ions from aqueous solution.
    Jin Y; Zhang M; Jin Z; Wang G; Li R; Zhang X; Liu X; Qu J; Wang H
    Environ Res; 2021 May; 196():110323. PubMed ID: 33098819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic adsorption by different Fe-enriched biochars conditioned with sulfuric acid.
    Xu M; Qin Y; Huang Q; Beiyuan J; Li H; Chen W; Wang X; Wang S; Yang F; Yuan W; Wang H
    Environ Sci Pollut Res Int; 2023 Feb; 30(6):16398-16407. PubMed ID: 36181599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the lead and copper adsorption capacities of plant source materials and their biochars.
    Lee ME; Park JH; Chung JW
    J Environ Manage; 2019 Apr; 236():118-124. PubMed ID: 30721829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous biochar modified with polyethyleneimine (PEI) for effective enrichment of U(VI) in aqueous solution.
    Wang X; Feng J; Cai Y; Fang M; Kong M; Alsaedi A; Hayat T; Tan X
    Sci Total Environ; 2020 Mar; 708():134575. PubMed ID: 31806329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms for the removal of Cd(II) and Cu(II) from aqueous solution and mine water by biochars derived from agricultural wastes.
    Bandara T; Xu J; Potter ID; Franks A; Chathurika JBAJ; Tang C
    Chemosphere; 2020 Sep; 254():126745. PubMed ID: 32315813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of biochar with silicon by one-step sintering and understanding of adsorption mechanism on copper ions.
    Liu J; Cheng W; Yang X; Bao Y
    Sci Total Environ; 2020 Feb; 704():135252. PubMed ID: 31831228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced removal of aged and differently functionalized polystyrene nanoplastics using ball-milled magnetic pinewood biochars.
    Shi Q; Guo S; Tang J; Lyu H; Ri C; Sun H
    Environ Pollut; 2023 Jan; 316(Pt 1):120696. PubMed ID: 36414160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic removal of tylosin/sulfamethoxazole and copper by nano-hydroxyapatite modified biochar.
    Li Z; Li M; Che Q; Li Y; Liu X
    Bioresour Technol; 2019 Dec; 294():122163. PubMed ID: 31563739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.